Open Access
Issue
EPJ Web Conf.
Volume 266, 2022
EOS Annual Meeting (EOSAM 2022)
Article Number 04007
Number of page(s) 2
Section Topical Meeting (TOM) 4- Bio-Medical Optics
DOI https://doi.org/10.1051/epjconf/202226604007
Published online 13 October 2022
  1. Belthangady, C. & Royer, L. A. learning for fluorescence image reconstruction. Nat. Methods (2009) doi:10.1038/s41592-019-0458-z. [Google Scholar]
  2. Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods 15, 1090–1097 (2018). [CrossRef] [PubMed] [Google Scholar]
  3. Laine, R. F., Arganda-Carreras, I., Henriques, R. & Jacquemet, G. Avoiding a replication crisis in deep-learning-based bioimage analysis. Nat. Methods 18, 1136–1144 (2021). [CrossRef] [PubMed] [Google Scholar]
  4. Chen, J. et al. Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes. Nat. Methods 18, (2021). [Google Scholar]
  5. Gurrola-ramos, J., Dalmau, O. & Alarcón, T. E. A Residual Dense U-Net Neural Network for Image Denoising. 9, (2021). [Google Scholar]
  6. Byun, J., Cha, S. & Moon, T. FBI-Denoiser: Fast Blind Image Denoiser for Poisson-Gaussian Noise. (2021). [Google Scholar]
  7. Mayorov, A. S. et al. Interaction-Driven Spectrum Reconstruction in Bilayer Graphene. Science (80-.). 333, 860–863 (2011). [CrossRef] [PubMed] [Google Scholar]
  8. Shanker, M., Hu, M. Y. & Hung, M. S. Effect of data standardization on neural network training. Omega 24, 385–397 (1996). [CrossRef] [Google Scholar]
  9. Qiao, C. et al. Evaluation and development of deep neural networks for image super-resolution in optical microscopy. Nat. Methods (2021) doi:10.1038/s41592-020-01048-5. [Google Scholar]
  10. Xypakis, E. et al. Deep learning for blind structured illumination microscopy. Sci. Rep. 12, 8623 (2022). [CrossRef] [Google Scholar]
  11. Falk, T. et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16, 67–70 (2019). [CrossRef] [PubMed] [Google Scholar]
  12. Mandracchia, B. et al. Fast and accurate sCMOS noise correction for fluorescence microscopy. Nat. Commun. 1–12 doi:s41467-019-13841–8. [Google Scholar]
  13. Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.