Open Access
Issue |
EPJ Web Conf.
Volume 268, 2022
Lecture Notes – Joint EPS-SIF International School on Energy 2021 – Course 6: Energy Innovation and Integration for a Clean Environment
|
|
---|---|---|
Article Number | 00002 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/epjconf/202226800002 | |
Published online | 22 November 2022 |
- Masson-Delmotte V., Zhai P., Pirani A., Connors S. L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M. I., Huang M., Leitzell K., Lonnoy E., Matthews J. B. R., Maycock T. K., Waterfield T., Yelekc¸i O., Yu R. and Zhou B. (Editors), IPCC, 2021: Climate Change 2021: The Physical Science Basis, contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press) 2021. [Google Scholar]
- Arias P. A., Bellouin N., Coppola E. et al., “Technical Summary”, in Climate Change 2021: The Physical Science Basis, contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Masson Delmotte V. et al. (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA) 2021, pp. 33–144. [Google Scholar]
- Masson-Delmotte V. et al. (Editors), “IPCC, 2021: Summary for Policymakers”, in Climate Change 2021: The Physical Science Basis, contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA) 2021, pp. 3–32. [Google Scholar]
- Chen D., Rojas M., Samset B. H. et al., “Framing, Context, and Methods”, in Climate Change 2021: The Physical Science Basis, contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Masson Delmotte V. et al. (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA) 2021, pp. 147–286. [Google Scholar]
- Marotzke J., Jakob C., Bony S., Dirmeyer P. A., O’Gorman P. A., Hawkins E., Perkins-Kirkpatrick S., Lequéré C., Nowicki S., Paulavets K., Seneviratne S. I., Stevens B. and Tuma M., “Climate research must sharpen its view”, Nat. Clim. Change, 7 (2017) 89. [CrossRef] [PubMed] [Google Scholar]
- WMO, https://public.wmo.int/en/about-us/frequently-asked-questions/climate (accessed on April, 21, 2022). [Google Scholar]
- von Humboldt A., Kosmos – Entwurf einer physischen Weltbeschreibung (1845-1862). [Google Scholar]
- Trenberth K. E., Fasullo J. T. and Kiehl J., “Earth’s global energy budget”, Bull. Am. Meteorol. Soc., 90 (2009) 311. [CrossRef] [Google Scholar]
- NASA, http://science-edu.larc.nasa.gov/energybudget/pdf/EnergyBudgetLitho10year.pdf, capture from October, 1, 2019. [Google Scholar]
- Manabe S. and Wetherald R. T., “Thermal equilibrium of the atmosphere with a given distribution of relative humidity”, J. Atmos. Sci., 24 (1967) 241. [CrossRef] [Google Scholar]
- Kluft L., Dacie S., Buehler S. A., Schmidt H. and Stevens B., “Re-examining the first climate models: Climate sensitivity of a modern radiative–convective equilibrium model”, J. Clim., 32 (2019) 8111. [CrossRef] [Google Scholar]
- Phillips N. A., “The General Circulation of the Atmosphere: A Numerical Experiment”, Q. J. R. Meteorol. Soc., 82 (1956) 123. [CrossRef] [Google Scholar]
- Verronen P. T. and Schmidt H., “Numerical models of atmosphere and ocean”, in Earth’s Climate Response to a Changing Sun (EDP Sciences) 2015, pp. 179–185. [Google Scholar]
- Eyring V., Gillett N. P., Achuta Rao K. M. et al., “Human Influence on the Climate System”, in Climate Change 2021: The Physical Science Basis, contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Masson-Delmotte V. et al. (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA) 2021, pp. 423–552. [Google Scholar]
- Satoh M., Stevens B., Judt F., Khairoutdinov M., Lin S. J., Putman W. M. and Düben P., “Global cloud-resolving models”, Curr. Clim. Change Rep., 5 (2019) 172. [CrossRef] [Google Scholar]
- Byrne M. P. and O’Gorman P. A., “Land–ocean warming contrast over a wide range of climates: Convective quasi-equilibrium theory and idealized simulations”, J. Clim., 26 (2013) 4000. [CrossRef] [Google Scholar]
- Pithan F. and Mauritsen T., “Arctic amplification dominated by temperature feedbacks in contemporary climate models”, Nat. Geosci., 7 (2014) 181. [CrossRef] [Google Scholar]
- NOAA National Centers for Environmental Information, State of the Climate: Monthly Global Climate Report for 2021, published online January 2022, retrieved on June 10, 2022 from https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202113/supplemental/page-1. [Google Scholar]
- Hasselmann K., “On the signal-to-noise problem in atmospheric response studies”, in Meteorology of Tropical Oceans, edited by Shaw D. B. (Royal Meteorological Society, Bracknell, UK) 1979, pp. 251–259. [Google Scholar]
- Hasselmann K., “Multi-pattern fingerprint method for detection and attribution of climate change”, Clim. Dyn., 13 (1997) 601. [CrossRef] [Google Scholar]
- Hegerl G. C., v. Storch H., Hasselmann K., Santer B. D., Cubasch U. and Jones P. D., “Detecting greenhouse gas induced Climate Change with an optimal fingerprint method”, J. Clim., 9 (1996) 2281. [CrossRef] [Google Scholar]
- Arrhenius S., “On the influence of carbonic acid in the air upon the temperature of the ground”, London, Edinburgh Dublin Philos. Mag. J. Sci., 5 (1896) 237. [CrossRef] [Google Scholar]
- Charney J. G., Arakawa A., Baker D. J., Bolin B., Dickinson R. E., Goody R. M., Leith C. E., Stommel H. M. and Wunsch C. I., Carbon Dioxide and Climate: a Scientific Assessment (National Academy of Sciences Press, Washington) 1979. [Google Scholar]
- Sherwood S. C., Webb M. J., Annan J. D. et al., “An assessment of Earth’s climate sensitivity using multiple lines of evidence”, Rev. Geophys., 58 (2020) e2019RG000678. [CrossRef] [PubMed] [Google Scholar]
- Seneviratne S. I., Zhang X., Adnan M. et al., “Weather and Climate Extreme Events in a Changing Climate”, in Climate Change 2021: The Physical Science Basis, contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Masson-Delmotte V. et al. (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA) 2021, pp. 1513–1766. [Google Scholar]
- Riahi K., van Vuuren D. P., Kriegler E. et al., “The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview”, Global Environ. Change, 42 (2017) 153. [CrossRef] [Google Scholar]
- Lee J.-Y., Marotzke J., Bala G. et al., “Future Global Climate: Scenario-Based Projections and Near-Term Information”, in Climate Change 2021: The Physical Science Basis, contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Masson-Delmotte V. et al. (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA) 2021, pp. 553–672. [Google Scholar]
- Hawkins E. and Sutton R., “The potential to narrow uncertainty in regional climate predictions”, Bull. Am. Meteorol. Soc., 90 (2009) 1095. [CrossRef] [Google Scholar]
- Shepherd T. G., “Atmospheric circulation as a source of uncertainty in climate change projections”, Nat. Geosci., 7 (2014) 703. [CrossRef] [Google Scholar]
- Stevens B. and Bony S., “What are climate models missing?”, Science, 340 (2013) 1053. [CrossRef] [PubMed] [Google Scholar]
- Farman J. C., Gardiner B. G. and Shanklin J. D., “Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction”, Nature, 315 (1985) 207. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.