Open Access
Issue
EPJ Web Conf.
Volume 268, 2022
Lecture Notes – Joint EPS-SIF International School on Energy 2021 – Course 6: Energy Innovation and Integration for a Clean Environment
Article Number 00016
Number of page(s) 22
DOI https://doi.org/10.1051/epjconf/202226800016
Published online 22 November 2022
  1. Mancarella P., “Mes (multi-energy systems): An overview of concepts and evaluation models”, Energy, 65 (2014) 1. [CrossRef] [Google Scholar]
  2. Kroposki B. D., Dall-Anese E., Bernstein A., Zhang Y. and Hodge B. S., Autonomous energy grids, technical report (National Renewable Energy Lab. (NREL), Golden, CO (USA)) 2017. [Google Scholar]
  3. Fang X., Misra S., Xue G. and Yang D., “Smart grid—the new and improved power grid: A survey”, IEEE Commun. Survey Tutor., 14 (2011) 944. [Google Scholar]
  4. Kroposki B. D., Bernstein A., King J., Vaidhynathan D., Zhou X., Chang C.-Y. and Dall’Anese E., “Autonomous energy grids: Controlling the future grid with large amounts of distributed energy resources”, IEEE Power Energy Mag., 18 (2020) 37. [CrossRef] [Google Scholar]
  5. Fiaz S., Zonetti D., Ortega R., Scherpen J. M. A. and van Der Schaft A. J., “A port-Hamiltonian approach to power network modeling and analysis”, Eur. J. Control, 19 (2013) 477. [CrossRef] [Google Scholar]
  6. Trip S., Cucuzzella M., Cheng X. and Scherpen J. M. A., “Distributed averaging control for voltage regulation and current sharing in DC microgrids”, IEEE Control Syst. Lett., 3 (2018) 174. [Google Scholar]
  7. Jafarian M., Scherpen J. M. A., Loeff K., Mulder M. and Aiello M., “A combined nodal and uniform pricing mechanism for congestion management in distribution power networks”, Electr. Power Syst. Res., 180 (2020) 106088. [CrossRef] [Google Scholar]
  8. Nguyen D. B., Alkano D. and Scherpen J. M. A., “The optimal control problem in smart energy grids”, in Smart Grids from a Global Perspective (Springer, Cham, Switzerland) 2016, pp. 95–111. [CrossRef] [Google Scholar]
  9. Kundur P., Power System Stability and Control, Vol. 10 (McGraw Hill, New York, USA) 1994. [Google Scholar]
  10. Lasseter R. H., “Microgrids”, IEEE Power Engineering Society Winter Meeting, Conf. Proc., 1 (2002) 305. [CrossRef] [Google Scholar]
  11. Schiffer J., Stability and Power Sharing in Microgrids, PhD Thesis, Technical University of Berlin (2015). [Google Scholar]
  12. Machowski J., Bialek J. W. and Bumby J. R., Power System Dynamics: Stability and Control, 2nd edition (Wiley, UK) 2008. [Google Scholar]
  13. Mancarella P., Andersson G., Pec¸as-Lopes J. A. and Bell K. R. W., “Modelling of integrated multi-energy systems: Drivers, requirements, and opportunities”, in IEEE Power Systems Computation Conference (PSCC) (IEEE) 2016, pp. 1–22. [Google Scholar]
  14. European Distribution System Operators (EDSO), https://www.edsoforsmartgrids.eu/home/why-smart-grids/, accessed: 2022-04-25. [Google Scholar]
  15. Geng S., Vrakopoulou M. and Hiskens I. A., “Optimal capacity design and operation of energy hub systems”, Proc. IEEE, 108 (2020) 1475. [CrossRef] [Google Scholar]
  16. van Der Schaft A. J., “Port-Hamiltonian modeling for control”, Annu. Rev. Control Robot. Autom. Syst., 3 (2020) 393. [CrossRef] [Google Scholar]
  17. Duindam V., Macchelli A., Stramigioli S. and Bruyninckx H., Modeling and Control of Complex Physical Systems: The Port-Hamiltonian Approach (Springer-Verlag, Berlin/Heidelber, Germany) 2009. [CrossRef] [Google Scholar]
  18. van Der Schaft A. J. and Jeltsema D., Port-Hamiltonian systems theory: An introductory overview (Now Publishers Inc., USA) 2014. [CrossRef] [Google Scholar]
  19. Hauschild S.-A., Marheineke N., Mehrmann V., Mohring J., Badlyan A. M., Rein M. and Schmidt M., “Port-Hamiltonian modeling of district heating networks”, in Progress in Differential-Algebraic Equations II (Springer, Cham, Switzerland) 2020, pp. 333–355. [Google Scholar]
  20. Domschke P., Hiller B., Mehrmann V., Morandin R. and Tischendorf C., “Gas network modeling: An overview”, preprint Collaborative Research Center TRR 154, 2021. [Google Scholar]
  21. van Der Schaft A. J., “Characterization and partial synthesis of the behavior of resistive circuits at their terminals”, Syst. Control Lett., 59 (2010) 423. [CrossRef] [Google Scholar]
  22. Schiffer J., Zonetti J., Ortega R., Stanković A. M., Seizi T. and Raisch J., “A survey on modeling of microgrids–From fundamental physics to phasors and voltage sources”, Automatica, 74 (2016) 135. [CrossRef] [Google Scholar]
  23. Maschke B., Ortega R. and van Der Schaft A. J., “Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation”, IEEE Trans. Autom. Control, 45 (2000) 1498. [CrossRef] [Google Scholar]
  24. Slotine J.-J., “Putting physics in control-the example of robotics”, IEEE Control Syst. Mag., 8 (1988) 12. [CrossRef] [Google Scholar]
  25. Ortega R., van Der Schaft A. J., Mareels I. and Maschke B., “Putting energy back in control”, IEEE Control Syst., 21 (2001) 18. [CrossRef] [Google Scholar]
  26. Trip S., Cucuzzella M., De Persis C., van Der Schaft A. J. and Ferrara A., “Passivity-based design of sliding modes for optimal load frequency control”, IEEE Trans. Control Syst. Technol., 27 (2019) 1893. [CrossRef] [Google Scholar]
  27. Trip S., Cucuzzella M., De Persis C., Ferrara A. and Scherpen J. M. A., “Robust load frequency control of nonlinear power networks”, Int. J. Control, 93 (2020) 346. [CrossRef] [Google Scholar]
  28. Silani A., Cucuzzella M., Scherpen J. M. A. and Yazdanpanah M. J., “Output regulation for load frequency control”, IEEE Trans. Control Syst. Technol., 30 (2022) 1130. [CrossRef] [Google Scholar]
  29. Justo J., Mwasilu F., Lee J. and Jung J.-W., “AC-microgrids versus DC-microgrids with distributed energy resources: A review”, Renew. Sust. Energ. Rev., 24 (2013) 387. [CrossRef] [Google Scholar]
  30. Zhao J. and Dörfler F., “Distributed control and optimization in DC microgrids”, Automatica, 61 (2015) 18. [CrossRef] [Google Scholar]
  31. De Persis C., Weitenberg E. A. and Dörfler F., “A power consensus algorithm for DC microgrids”, Automatica, 89 (2018) 364. [CrossRef] [Google Scholar]
  32. Gao F., Kang R., Cao J. and Yang T., “Primary and secondary control in DC microgrids: a review”, J. Mod. Power Syst. Clean Energy, 7 (2019) 227. [CrossRef] [Google Scholar]
  33. Cucuzzella M., Lazzari R., Kawano Y., Kosaraju K. C. and Scherpen J. M. A., “Robust Passivity-Based Control of Boost Converters in DC Microgrids”, in Proceedings of the 58th IEEE Conference on Decision Control (CDC) Nice, France, 2019 (IEEE) 2019, pp. 8435–8440. [CrossRef] [Google Scholar]
  34. Machado J. E. and Schiffer J., “A passivity-inspired design of power-voltage droop controllers for dc microgrids with electrical network dynamics”, in Proceedings of the 59th IEEE Conference on Decision Control (CDC), Jeju, South Korea, 2020 (IEEE) 2020, pp. 3060–3065. [Google Scholar]
  35. Kosaraju K. C., Cucuzzella M., Scherpen J. M. A. and Pasumarthy R., “Differentiation and Passivity for Control of Brayton–Moser Systems”, IEEE Trans. Autom. Control, 66 (2021) 1087. [CrossRef] [Google Scholar]
  36. Silani A., Cucuzzella M., Scherpen J. M. A. and Yazdanpanah M. J., “Output Regulation for Voltage Control in DC networks with Time-Varying Loads”, IEEE Control Syst. Lett., 5 (2021) 797. [CrossRef] [Google Scholar]
  37. Cucuzzella M., Bouman T., Kosaraju K. C., Schuitema G., Lemmen N. H., Johnson Zawadzki S., Fischione C., Steg L. and Scherpen J. M. A., “Distributed control of DC grids: integrating prosumers motives”, IEEE Trans. Power Syst., 37 (2021) 3299. [Google Scholar]
  38. Silani A., Cucuzzella M., Scherpen J. M. A. and Yazdanpanah M. J., “Robust output regulation for voltage control in dc networks with time-varying loads”, Automatica, 135 (2022) 109997. [CrossRef] [Google Scholar]
  39. Cucuzzella M., Trip S., De Persis C., Cheng X., Ferrara A. and van Der Schaft A. J., “A robust consensus algorithm for current sharing and voltage regulation in DC microgrids”, IEEE Trans. Control Syst. Technol., 27 (2018) 1583. [Google Scholar]
  40. Trip S., Han R., Cucuzzella M., Cheng X., Scherpen J. M. A. and Guerrero J., “Distributed averaging control for voltage regulation and current sharing in dc microgrids: Modelling and experimental validation”, IFAC-PapersOnLine, 51 (2018) 242. [CrossRef] [Google Scholar]
  41. Ferguson J., Cucuzzella M. and Scherpen J. M. A., “Exponential stability and local ISS for DC networks”, IEEE Control Syst. Lett., 5 (2020) 893. [Google Scholar]
  42. Cucuzzella M., Trip S., Ferrara A. and Scherpen J. M. A., “Cooperative voltage control in AC microgrids”, in Proceedings of the 57th IEEE Conference on Decision Control (CDC) Miami, United States 2018 (IEEE) 2018, pp. 6723–6728. [CrossRef] [Google Scholar]
  43. Boyd S. and Vandenberghe L., Convex Optimization (Cambridge University Press, United Kingdom) 2004. [CrossRef] [Google Scholar]
  44. Loeff K., Jafarian M. and Scherpen J. M. A., “Modeling of power distribution systems with solar generation: A case study”, arXiv preprint, arXiv:1702.06113, 2017. [Google Scholar]
  45. Feng S., Cucuzzella M., Bouman T., Steg L. and Scherpen J. M. A., “An integrated human-physical framework for control of power grids”, preprint, arxiv:2012.11208, 2020. [Google Scholar]
  46. Giselsson P. and Rantzer A., “On feasibility, stability and performance in distributed model predictive control”, IEEE Trans. Autom. Control, 59 (2013) 1031. [Google Scholar]
  47. Nguyen D. B., Scherpen J. M. A. and Bliek F., “Distributed optimal control of smart electricity grids with congestion management”, IEEE Trans. Autom. Sci. Eng., 14 (2017) 494. [CrossRef] [Google Scholar]
  48. Larsen G. K. H., van Foreest N. D. and Scherpen J. M. A., “Power supply–demand balance in a smart grid: An information sharing model for a market mechanism”, Appl. Math. Model., 38 (2014) 3350. [CrossRef] [Google Scholar]
  49. Larsen G. K. H., van Foreest N. D. and Scherpen J. M. A., “Distributed control of the power-supply balance”, IEEE Trans. Smart Grid, 4 (2013) 828. [CrossRef] [Google Scholar]
  50. Larsen G. K. H., van Foreest N. D. and Scherpen J. M. A., “Distributed MPC applied to a network of households with micro-CHP and heat storage”, IEEE Trans. Smart Grid, 5 (2014) 2106. [CrossRef] [Google Scholar]
  51. Alkano D. and Scherpen J. M. A., “Distributed supply coordination for power-to-gas facilities embedded in energy grids”, IEEE Trans. Smart Grid, 9 (2016) 1012. [Google Scholar]
  52. Alkano D., Scherpen J. M. A. and Chorfi Y., “Asynchronous distributed control of biogas supply and multi-energy Demand”, IEEE Trans. Autom. Sci. Eng., 14 (2017) 558. [CrossRef] [Google Scholar]
  53. Cenedese C., Fabiani F., Cucuzzella M., Scherpen J. M. A., Cao M. and Grammatico S., “Charging plug-in electric vehicles as a mixed-integer aggregative game”, in Proceedings of the 58th IEEE Conference on Decision Control (CDC), Nice, France, 2019 (IEEE) 2019, pp. 4904–4909. [Google Scholar]
  54. Dall’Anese E., Mancarella P. and Monti A., “Unlocking flexibility: Integrated optimization and control of multienergy systems”, IEEE Power Energy Mag., 15 (2017) 43. [CrossRef] [Google Scholar]
  55. De Persis Claudio and Kallesoe Carsten Skovmose, “Pressure regulation in nonlinear hydraulic networks by positive and quantized controls”, IEEE Trans. Control Syst. Technol., 19 (2011) 1371. [CrossRef] [Google Scholar]
  56. Scholten T., De Persis C. and Tesi P., “Modeling and control of heat networks with storage: the single-producer multiple-consumer case”, IEEE Trans. Control Syst. Technol., 25 (2016) 414. [Google Scholar]
  57. Strehle F., Vieth J., Pfeifer M. and Hohmann S., “Passivity-based stability analysis of hydraulic equilibria in 4th generation district heating networks”, IFAC-PapersOnLine, 54 (2021) 261. [CrossRef] [Google Scholar]
  58. Machado J. E., Cucuzzella M., Pronk N. and Scherpen J. M. A., “Adaptive control for flow and volume regulation in multi-producer district heating systems”, IEEE Control Syst. Lett., 6 (2021) 794. [Google Scholar]
  59. Machado J. E., Cucuzzella M. and Scherpen J. M. A., “Modeling and passivity properties of multi-producer district heating systems”, Automatica, 142 (2022) 110397. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.