Open Access
EPJ Web Conf.
Volume 273, 2022
Journées Nationales des Spectroscopies de PhotoEmission (JNSPE 2022)
Article Number 01007
Number of page(s) 5
Published online 02 December 2022
  1. R. Chen, Q. Li, X. Yu, L. Chen, and H. Li, “Approaching Practically Accessible SolidState Batteries: Stability Issues Related to Solid Electrolytes and Interfaces, ” Chem. Rev., vol. 120, no. 14, pp. 6820–6877, 2020. [CrossRef] [PubMed] [Google Scholar]
  2. J. Janek and W. G. Zeier, “A solid future for battery development, ” Nat. Energy, vol. 1, no. 9, 2016. [Google Scholar]
  3. Y. Ding, Z. P. Cano, A. Yu, J. Lu, and Z. Chen, “Automotive Li-Ion Batteries: Current Status and Future Perspectives, ” Electrochem. Energy Rev., vol. 2, no. 1, pp. 1–28, 2019. [CrossRef] [Google Scholar]
  4. A. Banerjee, X. Wang, C. Fang, E. A. Wu, and Y. S. Meng, “Interfaces and Interphases in AllSolid-State Batteries with Inorganic Solid Electrolytes, ” Chem. Rev., vol. 120, no. 14, pp. 6878–6933, 2020. [CrossRef] [PubMed] [Google Scholar]
  5. I. López, J. Morey, J. B. Ledeuil, L. Madec, and H. Martinez, “A critical discussion on the analysis of buried interfaces in Li solid-state batteries.: Ex situ and in situ / operando studies, ” J. Mater. Chem. A, vol. 9, no. 45, pp. 25341–25368, Dec. 2021. [Google Scholar]
  6. X. Wu, C. Villevieille, P. Novák, and M. El Kazzi, “Monitoring the chemical and electronic properties of electrolyte-electrode interfaces in all-solid-state batteries using: Operando X-ray photoelectron spectroscopy, ” Phys. Chem. Chem. Phys., vol. 20, no. 16, pp. 11123–11129, 2018. [Google Scholar]
  7. X. Wu, C. Villevieille, P. Novák, and M. El Kazzi, “Insights into the chemical and electronic interface evolution of Li4Ti5O12 cycled in Li2S-P2S5 enabled by: Operando Xray photoelectron spectroscopy, ” J. Mater. Chem. A, vol. 8, no. 10, pp. 5138–5146, 2020. [Google Scholar]
  8. M. Mirolo, X. Wu, C. A. F. Vaz, P. Novák, and M. El Kazzi, “Unveiling the Complex Redox Reactions of SnO2in Li-Ion Batteries Using Operando X-ray Photoelectron Spectroscopy and in Situ X-ray Absorption Spectroscopy, ” ACS Appl. Mater. Interfaces, vol. 13, no. 2, pp. 2547–2557, 2021. [CrossRef] [PubMed] [Google Scholar]
  9. R. Koerver et al., “Redox-active cathode interphases in solid-state batteries, ” J. Mater. Chem. A, vol. 5, no. 43, pp. 22750–22760, 2017. [Google Scholar]
  10. Y. C. Lu et al., “In situ ambient pressure X-ray photoelectron spectroscopy studies of lithiumoxygen redox reactions, ” Sci. Rep., vol. 2, pp. 1–6, 2012. [Google Scholar]
  11. M. Favaro et al., “Unravelling the electrochemical double layer by direct probing of the solid/liquid interface, ” Nat. Commun., vol. 7, no. May, pp. 1–8, 2016. [Google Scholar]
  12. X. Wu, M. El Kazzi, and C. Villevieille, “Surface and morphological investigation of the electrode/electrolyte properties in an allsolid-state battery using a Li2S-P2S5 solid electrolyte, ” J. Electroceramics, vol. 38, no. 2–4, pp. 207–214, 2017. [CrossRef] [Google Scholar]
  13. D. Weingarth, A. Foelske-Schmitz, A. Wokaun, and R. Kötz, “In situ electrochemical XPS study of the Pt/[EMIM][BF4] system, ” Electrochem. commun., vol. 13, no. 6, pp. 619–622, 2011. [CrossRef] [Google Scholar]
  14. J. Liang et al., “Stabilizing and understanding the interface between nickel-rich cathode and PEO-based electrolyte by lithium niobium oxide coating for high-performance all-solidstate batteries, ” Nano Energy, vol. 78, no. August, p. 105107, 2020. [Google Scholar]
  15. R. Schlenker et al., “Understanding the Lifetime of Battery Cells Based on Solid-State Li6PS5Cl Electrolyte Paired with Lithium Metal Electrode, ” ACS Appl. Mater. Interfaces, vol. 12, no. 17, pp. 20012–20025, 2020. [CrossRef] [PubMed] [Google Scholar]
  16. L. Wang, D. Liu, T. Huang, Z. Geng, and A. Yu, “Reducing interfacial resistance of a Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte/electrode interface by polymer interlayer protection, ” RSC Adv., vol. 10, no. 17, pp. 10038–10045, 2020. [Google Scholar]
  17. A. L. Davis et al., “Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2SP2S5 solid-state electrolytes, ” Nat. Commun., vol. 8, no. 1, pp. 6291–6302, 2020. [Google Scholar]
  18. M. G. Boebinger, J. A. Lewis, S. E. Sandoval, and M. T. McDowell, “Understanding Transformations in Battery Materials Using in Situ and Operando Experiments: Progress and Outlook, ” ACS Energy Lett., vol. 5, pp. 335–345, 2020. [CrossRef] [Google Scholar]
  19. L. Yang et al., “Dynamic visualization of the phase transformation path in LiFePO4 during delithiation, ” Nanoscale, vol. 11, no. 38, pp. 17557–17562, 2019. [Google Scholar]
  20. X. Liu et al., “Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy, ” Nat. Commun., vol. 4, no. May, pp. 1–8, 2013. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.