Open Access
EPJ Web Conf.
Volume 273, 2022
Journées Nationales des Spectroscopies de PhotoEmission (JNSPE 2022)
Article Number 01013
Number of page(s) 7
Published online 02 December 2022
  1. bp. Statistical Review of World Energy, 71st edition; 2022. [Google Scholar]
  2. Office of Energy Efficiency & Renewable Energy, (accessed. [Google Scholar]
  3. Carey, G. H.; Abdelhady, A. L.; Ning, Z.; Thon, S. M.; Bakr, O. M.; Sargent, E. H. Colloidal Quantum Dot Solar Cells. Chemical Reviews 2015, 115 (23), 1273212763. DOI: 10.1021/acs.chemrev.5b00063. [CrossRef] [PubMed] [Google Scholar]
  4. Jena, A. K.; Kulkarni, A.; Miyasaka, T. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chemical Reviews 2019, 119 (5), 3036-3103. DOI: 10.1021/acs.chemrev.8b00539. [CrossRef] [PubMed] [Google Scholar]
  5. Abd Mutalib, M.; Ludin, N. A.; Ruzalman, N. A. A. N.; Barrioz, V.; Sepeai, S.; Teridi, M. A. M.; Su’ait, M. S.; Ibrahim, M. A.; Sopian, K. Progress towards highly stable and lead-free perovskite solar cells. Materials for Renewable and Sustainable Energy 2018, 7 (2). DOI: 10.1007/s40243-018-0113-0. [Google Scholar]
  6. Widdra, W.; Brocker, D.; Giessel, T.; Hertel, I. V.; Kruger, W.; Liero, A.; Noack, F.; Petrov, V.; Pop, D.; Schmidt, P. M.; et al. Time-resolved core level photoemission: surface photovoltage dynamics of the SiO2/Si(100) interface. Surface Science 2003, 543 (13), 87-94, Article. DOI: 10.1016/j.susc.2003.07.005. [Google Scholar]
  7. Brocker, D.; Giessel, T.; Widdra, W. Charge carrier dynamics at the SiO2/Si(100) surface: a time-resolved photoemission study with combined laser and synchrotron radiation. Chemical Physics 2004, 299 (23), 247-251, Article. DOI: 10.1016/j.chemphys.2003.11.028. [CrossRef] [Google Scholar]
  8. Polack, F.; Silly, M.; Chauvet, C.; Lagarde, B.; Bergeard, N.; Izquierdo, M.; Chubar, O.; Krizmancic, D.; Ribbens, M.; Duval, J. P.; et al. TEMPO: a New Insertion Device Beam line at SOLEIL for Time Resolved Photoelectron Spectroscopy Experiments on Solids and Interfaces. In 10th International Conference on Synchrotron Radiation Instrumentation, Melbourne, AUSTRALIA, Sep 27-Oct 02, 2010; AIP Conference Proceedings: Vol. 1234, pp 185-188. DOI: 10.1063/1.3463169. [Google Scholar]
  9. Shavorskiy, A.; Neppl, S.; Slaughter, D. S.; Cryan, J. P.; Siefermann, K. R.; Weise, F.; Lin, M. F.; Bacellar, C.; Ziemkiewicz, M. P.; Zegkinoglou, I.; et al. Subnanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources. Review of Scientific Instruments 2014, 85 (9), 8, Article. DOI: 10.1063/1.4894208. [Google Scholar]
  10. Ogawa, M.; Yamamoto, S.; Kousa, Y.; Nakamura, F.; Yukawa, R.; Fukushima, A.; Harasawa, A.; Kondoh, H.; Tanaka, Y.; Kakizaki, A.; et al. Development of soft x-ray time-resolved photoemission spectroscopy system with a two-dimensional angle-resolved time-of-flight analyzer at SPring-8 BL07LSU. Review of Scientific Instruments 2012, 83 (2), 7, Article. DOI: 10.1063/1.3687428. [Google Scholar]
  11. Cautero, G.; Sergo, R.; Stebel, L.; Lacovig, P.; Pittana, P.; Predonzani, M.; Carrato, S. A twodimensional detector for pump-and-probe and time resolved experiments. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 2008, 595 (2), 447-459, Article. DOI: 10.1016/j.nima.2008.06.046. [Google Scholar]
  12. Bergeard, N.; Silly, M. G.; Krizmancic, D.; Chauvet, C.; Guzzo, M.; Ricaud, J. P.; Izquierdo, M.; Stebel, L.; Pittana, P.; Sergo, R.; et al. Time-resolved photoelectron spectroscopy using synchrotron radiation time structure. Journal of Synchrotron Radiation 2011, 18, 245-250. DOI: 10.1107/s0909049510052301. [Google Scholar]
  13. Silly, M. G.; Ferte, T.; Tordeux, M. A.; Pierucci, D.; Beaulieu, N.; Chauvet, C.; Pressacco, F.; Sirotti, F.; Popescu, H.; Lopez-Flores, V.; et al. Pump-probe experiments at the TEMPO beamline using the lowalpha operation mode of Synchrotron SOLEIL. Journal of Synchrotron Radiation 2017, 24, 886-897. DOI: 10.1107/s1600577517007913. [Google Scholar]
  14. Sundaram, S. K.; Mazur, E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nature Materials 2002, 1 (4), 217-224. DOI: 10.1038/nmat767. [Google Scholar]
  15. Stevie, F. A.; Donley, C. L. Introduction to x-ray photoelectron spectroscopy. Journal of Vacuum Science & Technology A 2020, 38 (6). DOI: 10.1116/6.0000412. [Google Scholar]
  16. Ratner, B. D.; Castner, D. G. Electron Spectroscopy for Chemical Analysis. In Surface Analysis – The Principal Techniques, 2nd ed.; John C. Vickerman, I. S. G. Ed.; John Wiley & Sons, Ltd, 2009; pp 47-112. [Google Scholar]
  17. Tanuma, S.; Powell, C. J.; Penn, D. R. Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50–2000 eV range. Surf. Interface Anal. 1994, 21, 165–176. DOI: 10.1002/sia.740210302. [Google Scholar]
  18. Silly, M. G.; D’Angelo, M.; Besson, A.; Dappe, Y. J.; Kubsky, S.; Li, G.; Nicolas, F.; Pierucci, D.; Thomasset, M. Electronic and structural properties of graphene-based metal-semiconducting heterostructures engineered by silicon intercalation. Carbon 2014, 76, 27-39. DOI: 10.1016/j.carbon.2014.04.033. [CrossRef] [Google Scholar]
  19. Gao, Y. L. Surface analytical studies of interfaces in organic semiconductor devices. Materials Science & Engineering R-Reports 2010, 68 (3), 39-87. DOI: 10.1016/j.mser.2010.01.001. [Google Scholar]
  20. Pierucci, D.; Mahmoudi, A.; Silly, M.; Bisti, F.; Oehler, F.; Patriarche, G.; Bonell, F.; Marty, A.; Vergnaud, C.; Jamet, M.; et al. Evidence for highly ptype doping and type II band alignment in large scale monolayer WSe2/Se-terminated GaAs heterojunction grown by molecular beam epitaxy. Nanoscale 2022, 14 (15), 5859-5868. DOI: 10.1039/d2nr00458e. [Google Scholar]
  21. Kronik, L.; Shapira, Y. Surface photovoltage phenomena: theory, experiment, and applications. Surface Science Reports 1999, 37 (1-5), 1-206, Review. DOI: 10.1016/s0167-5729(99)00002-3. [Google Scholar]
  22. Spencer, B. F.; Graham, D. M.; Hardman, S. J. O.; Seddon, E. A.; Cliffe, M. J.; Syres, K. L.; Thomas, A. G.; Stubbs, S. K.; Sirotti, F.; Silly, M. G.; et al. Timeresolved surface photovoltage measurements at n-type photovoltaic surfaces: Si(111) and ZnO(10(1)over-bar0). Physical Review B 2013, 88 (19), 16, Article. DOI: 10.1103/PhysRevB.88.195301. [Google Scholar]
  23. Andreani, L. C.; Bozzola, A.; Kowalczewski, P.; Liscidini, M.; Redorici, L. Silicon solar cells: toward the efficiency limits. Advances in Physics-X 2019, 4 (1). DOI: 10.1080/23746149.2018.1548305. [Google Scholar]
  24. Jayakrishnan, R.; Gandhi, S.; Suratkar, P. Correlation between solar cell efficiency and minority carrier lifetime for batch processed multicrystalline Si wafers. Materials Science in Semiconductor Processing 2011, 14 (3-4), 223-228. DOI: 10.1016/j.mssp.2011.02.020. [Google Scholar]
  25. Ogawa, M.; Yamamoto, S.; Fujikawa, K.; Hobara, R.; Yukawa, R.; Kitagawa, S.; Pierucci, D.; Silly, M. G.; Lin, C. H.; Liu, R. Y.; et al. Relaxations of the surface photovoltage effect on the atomically controlled semiconductor surfaces studied by time-resolved photoemission spectroscopy. Physical Review B 2013, 88 (16), 9, Article. DOI: 10.1103/PhysRevB.88.165313. [Google Scholar]
  26. Pierucci, D.; Silly, M. G.; Tissot, H.; Hollander, P.; Sirotti, F.; Rochet, F. Surface photovoltage dynamics at passivated silicon surfaces: influence of substrate doping and surface termination. Faraday Discussions 2022. DOI: 10.1039/d1fd00107h. [PubMed] [Google Scholar]
  27. Long, J. P.; Sadeghi, H. R.; Rife, J. C.; Kabler, M. N. SURFACE SPACE-CHARGE DYNAMICS AND SURFACE RECOMBINATION ON SILICON(111) SURFACES MEASURED WITH COMBINED LASER AND SYNCHROTRON RADIATION. Physical Review Letters 1990, 64 (10), 1158-1161. DOI: 10.1103/PhysRevLett.64.1158. [Google Scholar]
  28. Kaidashev, E. M.; Lorenz, M.; von Wenckstern, H.; Rahm, A.; Semmelhack, H. C.; Han, K. H.; Benndorf, G.; Bundesmann, C.; Hochmuth, H.; Grundmann, M. High electron mobility of epitaxial ZnO thin films on cplane sapphire grown by multistep pulsed-laser deposition. Applied Physics Letters 2003, 82 (22), 39013903. DOI: 10.1063/1.1578694. [CrossRef] [Google Scholar]
  29. Vittal, R.; Ho, K.-C. Zinc oxide based dyesensitized solar cells: A review. Renewable & Sustainable Energy Reviews 2017, 70, 920-935. DOI: 10.1016/j.rser.2016.11.273. [Google Scholar]
  30. Lany, S.; Zunger, A. Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors. Physical Review B 2005, 72 (3). DOI: 10.1103/PhysRevB.72.035215. [Google Scholar]
  31. Scharber, M. C.; Sariciftci, N. S. Efficiency of bulkheterojunction organic solar cells. Progress in Polymer Science 2013, 38 (12), 1929-1940. DOI: 10.1016/j.progpolymsci.2013.05.001. [Google Scholar]
  32. Costantini, R.; Pincelli, T.; Cossaro, A.; Verdini, A.; Goldoni, A.; Cichon, S.; Caputo, M.; Pedio, M.; Panaccione, G.; Silly, M. G.; et al. Time resolved resonant photoemission study of energy level alignment at donor/acceptor interfaces. Chemical Physics Letters 2017, 683, 135-139. DOI: 10.1016/j.cplett.2017.04.033. [CrossRef] [Google Scholar]
  33. Chauvet, C.; Polack, F.; Silly, M. G.; Lagarde, B.; Thomasset, M.; Kubsky, S.; Duval, J. P.; Risterucci, P.; Pilette, B.; Yao, I.; et al. Carbon contamination of soft X-ray beamlines: dramatic anti-reflection coating effects observed in the 1 keV photon energy region. Journal of Synchrotron Radiation 2011, 18, 761-764. DOI: 10.1107/s0909049511023119. [Google Scholar]
  34. Yao-Leclerc, I.; Brochet, S.; Chauvet, C.; De Oliveira, N.; Duval, J. P.; Gil, J. F.; Kubsky, S.; Lagarde, B.; Nahon, L.; Nicolas, F.; et al. Handling the carbon contamination issue at SOLEIL. In Damage to Vuv, Euv, and X-Ray Optics Iii, Juha, L., Bajt, S., London, R. A. Eds.; Proceedings of SPIE, Vol. 8077; 2011. [Google Scholar]
  35. Arion, T.; Neppl, S.; Roth, F.; Shavorskiy, A.; Bluhm, H.; Hussain, Z.; Gessner, O.; Eberhardt, W. Site-specific probing of charge transfer dynamics in organic photovoltaics. Applied Physics Letters 2015, 106 (12), 5, Article. DOI: 10.1063/1.4916278. [Google Scholar]
  36. Ozawa, K.; Yamamoto, S.; Mase, K.; Matsuda, I. A Surface Science Approach to Unveiling the TiO2 Photocatalytic Mechanism: Correlation between Photocatalytic Activity and Carrier Lifetime. E-Journal of Surface Science and Nanotechnology 2019, 17, 130147. DOI: 10.1380/ejssnt.2019.130. [CrossRef] [Google Scholar]
  37. Sargent, E. H. Colloidal quantum dot solar cells. Nature Photonics 2012, 6 (3), 133-135. DOI: 10.1038/nphoton.2012.33. [Google Scholar]
  38. Bossavit, E.; Qu, J.; Abadie, C.; Dabard, C.; Dang, T.; Izquierdo, E.; Khalili, A.; Greboval, C.; Chu, A.; Pierini, S.; et al. Optimized Infrared LED and Its Use in an All-HgTe Nanocrystal-Based Active Imaging Setup. Advanced Optical Materials 2022, 10 (4). DOI: 10.1002/adom.202101755. [CrossRef] [Google Scholar]
  39. Huang, K.; Demadrille, R.; Silly, M. G.; Sirotti, F.; Reiss, P.; Renault, O. Internal Structure of InP/ZnS Nanocrystals Unraveled by High-Resolution Soft X-ray Photoelectron Spectroscopy. Acs Nano 2010, 4 (8), 4799-4805. DOI: 10.1021/nn100581t. [CrossRef] [PubMed] [Google Scholar]
  40. Clark, P. C. J.; Radtke, H.; Pengpad, A.; Williamson, A. I.; Spencer, B. F.; Hardman, S. J. O.; Leontiadou, M. A.; Neo, D. C. J.; Fairclough, S. M.; Watt, A. A. R.; et al. The passivating effect of cadmium in PbS/CdS colloidal quantum dots probed by nm-scale depth profiling. Nanoscale 2017, 9 (18), 6056-6067. DOI: 10.1039/c7nr00672a. [Google Scholar]
  41. Shard, A. G.; Wang, J.; Spencer, S. J. XPS topofactors: determining overlayer thickness on particles and fibres. Surface and Interface Analysis 2009, 41 (7), 541-548. DOI: 10.1002/sia.3044. [Google Scholar]
  42. Shard, A. G. A Straightforward Method For Interpreting XPS Data From Core-Shell Nanoparticles. Journal of Physical Chemistry C 2012, 116 (31), 1680616813. DOI: 10.1021/jp305267d. [Google Scholar]
  43. Livache, C.; Izquierdo, E.; Martinez, B.; Dufour, M.; Pierucci, D.; Keuleyan, S.; Cruguel, H.; Becerra, L.; Fave, J. L.; Aubin, H.; et al. Charge Dynamics and Optolectronic Properties in HgTe Colloidal Quantum Wells. Nano Letters 2017, 17 (7), 4067-4074. DOI: 10.1021/acs.nanolett.7b00683. [Google Scholar]
  44. Dabard, C.; Planelles, J.; Po, H.; Izquierdo, E.; Makke, L.; Greboval, C.; Moghaddam, N.; Khalili, A.; Dang, T. H.; Chu, A.; et al. Optimized Cation Exchange for Mercury Chalcogenide 2D Nanoplatelets and Its Application for Alloys. Chemistry of Materials 2021, 33 (23), 9252-9261. DOI: 10.1021/acs.chemmater.1c02951. [CrossRef] [Google Scholar]
  45. Spencer, B. F.; Leontiadou, M. A.; Clark, P. C. J.; Williamson, A. I.; Silly, M. G.; Sirotti, F.; Fairclough, S. M.; Tsang, S. C. E.; Neo, D. C. J.; Assender, H. E.; et al. Charge dynamics at heterojunctions for PbS/ZnOcolloidal quantum dot solar cells probed with timeresolved surface photovoltage spectroscopy. Applied Physics Letters 2016, 108 (9). DOI: 10.1063/1.4943077. [Google Scholar]
  46. Shockley, W.; Queisser, H. J. DETAILED BALANCE LIMIT OF EFFICIENCY OF P-N JUNCTION SOLAR CELLS. Journal of Applied Physics 1961, 32 (3), 510-519. DOI: 10.1063/1.1736034. [Google Scholar]
  47. Friend, C. M.; Xu, B. Heterogeneous Catalysis: A Central Science for a Sustainable Future. Accounts of Chemical Research 2017, 50 (3), 517-521. DOI: 10.1021/acs.accounts.6b00510. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.