Open Access
EPJ Web Conf.
Volume 281, 2023
5th International Workshop on Nuclear Data Covariances (CW2022)
Article Number 00008
Number of page(s) 9
Published online 29 March 2023
  1. M. Salvatores, G. Palmiotti, G. Aliberti, R. Rochman, W. Wang, H. Wu, W.-S. Yang, NEA/NSC/WPEC/DOC (2013) 445, OECD/NEA (2013) [Google Scholar]
  2. M. Salvatores, G. Aliberti, M. Dunn, A. Hogenbirk, A. Ignatyuk, M. Ishikawa, I. Kodeli, A.J. Koning, R. McKnight, R.W. Mills, P. Oblozinsky, G. Palmiotti, A. Plompen, G. Rimpault, Y. Rugama, P. Talou, W. S. Yang, Nuclear Science NEA/WPEC26, OECD/NEA (2008) [Google Scholar]
  3. G. Palmiotti, M. Salvatores, K. Yokoyama, M. Ishikawa, NEA/NSC/R(2016)6, OECD/NEA (2017) [Google Scholar]
  4. M. Salvatores, G. Palmiotti, Proc. of Int. Conf. on Nuclear Data for Science and Technology, ND2019, EPJ Web of Conferences, 239, 13001 (2020) [CrossRef] [EDP Sciences] [Google Scholar]
  5. Covariance Data Utilization and Promotion Working Group, JAEA-Review 2021-014, Japan Atomic Energy Agency (2021) [In Japanese] [Google Scholar]
  6. H. Akaike, Proceedings of the 2nd International Symposium on Information Theory, pp. 267-281, Budapest (1973) [Google Scholar]
  7. K. Yokoyama, K. Sugino, M. Ishikawa, S. Maruyama, Y. Nagaya, K. Numata, T. Jin, JAEAResearch 2018-011 (2019) [In Japanese] [Google Scholar]
  8. K. Yokoyama, S. Maruyama, H. Taninaka, S. Ohki, JAEA-Data/Code 2021-019 (2022) [In Japanese] [Google Scholar]
  9. D. Siefman, M. Hursin, G. Schnabel, H. Sjöstrand, Annals of nuclear energy 159, 108255 (2021) [CrossRef] [Google Scholar]
  10. C. M. Bishop, Pattern Recognition and Machine Learning (2006) [Google Scholar]
  11. NumPy reference guide, release 1.19 [Internet].; [updated 2020 Jun 29; cited 2022 Sep 27] Available from: [Google Scholar]
  12. LAPACK Documentation, release 3.10.1 [Internet].; [updated 2022 Sep 27; cited 2022 Sep 27] Available from: [Google Scholar]
  13. SciPy reference guide, release 1.4.1 [Internet].; [updated 2019 Dec 19; cited 2022 Sep 27] Available from: [Google Scholar]
  14. Gene H. Golub and Charles F. van Loan, Matrix Computations (1996) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.