Open Access
Issue |
EPJ Web of Conf.
Volume 284, 2023
15th International Conference on Nuclear Data for Science and Technology (ND2022)
|
|
---|---|---|
Article Number | 15002 | |
Number of page(s) | 8 | |
Section | Integral Experiments and Validation | |
DOI | https://doi.org/10.1051/epjconf/202328415002 | |
Published online | 26 May 2023 |
- I. Kodeli, E. Sartori, SINBAD – Radiation shielding benchmark experiments, Ann. Nucl. Energy 159 (2021) 108254. [CrossRef] [Google Scholar]
- P. Miller, P. Nagel, M. Salvatores, E. Sartori, Shielding Experimental Benchmark Base at the Nuclear Energy Data Bank, Proc. 7th Int. Conf. on Rad. Shielding, Bournemouth, UK 1988 NEACRP-L–310 [Google Scholar]
- SINBAD database, OECDNEA,abstracts available online: https://www.oecdnea.org/science/wprs/shielding/sinbad/ [Google Scholar]
- A.J.M. Plompen, O. Cabellos, C. De Saint Jean et al., The Joint Evaluated Fission and Fusion Nuclear Data Library, European Physical Journal A 56 (2020) 181. [CrossRef] [Google Scholar]
- D.A. Brown, M.B. Chadwick, R. Capote et al., ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data, Nuclear Data Sheets 148 (2018) 1. [Google Scholar]
- Fusion Evaluated Nuclear Data Library – FENDL-3.2b: https://www-nds.iaea.org/fendl/ [Google Scholar]
- International Reactor Dosimetry and Fusion File, IRDFF-II, Jan.2020: https://www-nds.iaea.org/IRDFF/ [Google Scholar]
- I. Kodeli, O. Cabellos, L. Leal, Use of shielding integral benchmark archive and database for nuclear data validation, J Web of Conferences 239, 18001 (2020) https://doi.org/10:1051/epjconf/202023918001 [Google Scholar]
- Y. Wu, J. Song, H. Zheng, G. Sun, L. Hao, P. Long, L. Hu, CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC. Ann. Nucl. Energy. (2015) [Google Scholar]
- J. Leppänen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The Serpent Monte Carlo code: Status,development and applications in 2013. Ann. Nucl. Energy,82 (2015) 142–150. (2013) [CrossRef] [Google Scholar]
- Compilation of Nuclear Data Experiments for Radiation Characterisation (CoNDERC), https://nds.iaea.org/conderc/ [Google Scholar]
- M. Angelone, et al., Copper benchmark experiment for the testing of JEFF-3.2 nuclear data for fusion applications, EPJ Web of Conferences 146, 09004 (2017) [Google Scholar]
- I. Kodeli, K. Kondo, R.L. Perel, U. Fischer, Cross-Section Sensitivity and Uncertainty Analysis of the FNG Copper Benchmark Experiment, Fus. Eng. Design, 109–111 (2016) 1222–1226. [CrossRef] [Google Scholar]
- MCNP – a general-purpose Monte Carlo N-Particle code: https://mcnp.lanl.gov/. [Google Scholar]
- I. Kodeli, Multidimensional Deterministic Nuclear Data Sensitivity and Uncertainty Code System, Method and Application, Nucl. Sci. Eng., 138, 45–66 (2001) [Google Scholar]
- E.A. Straker, Experimental Evaluation of Minima in the Total Neutron Cross Sections of Several Shielding Materials, Report ORNL-TM-2242, Oak Ridge, 1968. [Google Scholar]
- S.P. Simakov and U. Fisher, ORNL Oxygen Broomstick Experiment: MCNP model and evaluation results for SINBAD entry NEA-1517/59, KIT ScientificWorking Papers 202, Karlsruhe, Nov. 2022. [Google Scholar]
- International Criticality Safety Benchmark Evaluation Project (ICSBEP), NEA Data Bank https://www.oecd-nea.org/science/wpncs/icsbep/. [Google Scholar]
- S.-H. Jiang and H. Werle, Messung und Berechnung der durch 252Cf-Spaltneutronen in Eisen induzierten !-Felder, Report KFK-2444, Karlsruhe 1977. [Google Scholar]
- S.-H. Jiang and H. Werle, “Measurement and Calculation of Californium-252 Fission Neutron-Induced Gamma Fields in Iron”, Nuc. lSci. Eng. 66 (1978) 354. [CrossRef] [Google Scholar]
- S.P. Simakov and U. Fisher, KFK !-ray leakage Iron sphere benchmark with Cf source: entry for SINBAD and analysis, KIT Scientific Working Papers 203, Karlsruhe, Nov. 2022. [Google Scholar]
- C.Wong, J.D. Anderson, P. Brown et al., “Livermore Pulsed Sphere Program: Program Summary through July 1971,” Lawrence Livermore Laboratory Report UCRL-ID-51144 (1972). [Google Scholar]
- C.Wong, E.F. Plechaty, R.W. Bauer et al., “Measurements and Calculations of the Leakage Multiplication from Hollow Beryllium spheres,” Lawrence Livermore Laboratory Report UCRL-ID-91774 (1985). [Google Scholar]
- W. Webster and C. Wong, “Measurements of the neutron emission spectra from spheres of N, O, W, 235 U, 238 U, and 239Pu, pulsed by 14-MeV neutrons,” Lawrence Livermore Laboratory Report UCID-17332 (1976). [Google Scholar]
- A.A. Marchetti and G.W. Hedstrom, “New Monte Carlo Simulation of the LLNL Pulsed-Sphere Experiments,” Lawrence Livermore Laboratory Report UCRL-ID-131461 (1998). [Google Scholar]
- E.R. Plechaty and R.J. Howerton, “Calculation Models for LLL Pulsed Spheres (CSEWG Shielding Benchmark Collection No. SDT 10),” Lawrence Livermore Laboratory Report UCID-16372 (1973). [Google Scholar]
- D. Neudecker, “Validating the U.S. Nuclear Data Library ENDF/B-VIII.0 with a Suite of LLNL Pulsed Sphere Measurements,” Los Alamos National Laboratory Report LA-UR-18–29383 (2018). [Google Scholar]
- D. Neudecker et al. “Which nuclear data can be validated with LLNL pulsed-sphere experiments,” Ann. of Nucl. En. 159, 108345 (2021). [CrossRef] [Google Scholar]
- EUCLID, “EUCLID Sensitivity Database, ”Los Alamos National Laboratory Report LA-UR- (2022). [Google Scholar]
- N. Nakao, H. Nakashima, T. Nakamura, et al. Transmission through shields of quasi-monoenergetic neutrons generated by 43- and 68-MeV protons. Part-I: concrete shielding experiment and calculation for practical application. Nucl Sci Eng. 1996;124: 228–242. [CrossRef] [Google Scholar]
- H. Nakashima, N. Nakao, S. Tanaka, et al. Transmission through shields of quasi-monoenergetic neutrons generated by 43- and 68-MeV protons. Part-II: iron shielding experiment and analysis for investigating calculation methods and cross section data. Nucl Sci Eng 1996;124: 243–257. [Google Scholar]
- T. Sato, Y. Iwamoto, S. Hashimoto, et al. Features of Particle and Heavy Ion Transport Code System (PHITS) version 3.02. J Nucl Sci Technol. 2018;55(6):684–690. [Google Scholar]
- A. Milocco, B. Žefran, I.-A. Kodeli. Validation of nuclear data based on the ASPIS experiments from the SINBAD database. V: RPSD-2018, 20th Topical meeting of the radiation protection and shielding division, 26–31 Aug. 2018, Santa Fe. ANS 2018. [Google Scholar]
- D. Hanlon, Responses to Quality Assessment Concerns: ASPIS PCA Replica and NESDIP 3, Jacobs report (2021) [Google Scholar]
- A. Hajji C. Coquelet-Pascal, P. Blaise, Interpretation of the JANUS Phase 7 shielding experiment with TRIPOLI-4 and quantification of uncertainties due to nuclear data, Ann. Nucl. Energy 149, 107797 (2020) [Google Scholar]
- D. De Bruyn, R. Fernandez, P. Baeten, ‘’The Belgian MYRRHA ADS Programme. Part 2: Recent developments in the reactor primary system”, Int. Congress on Advances in Nuclear Power Plants (ICAPP’18), Charlotte (NC), USA (2018). [Google Scholar]
- P. Romano, N. Horelik, B. Herman, A. Nelson, B. Forget, K. Smith, OpenMC: A state-of-the-art Monte Carlo code for research and development. Ann. Nucl. Energy. 82 pp. 90–97 (2015), Joint Int. Conf. on Supercomputing in Nuclear Applications and Monte Carlo 2013, SNA + MC 2013. [Google Scholar]
- A. Davis, S. Lilley, J. Shimwell, csg2csg: a Tool to Assist Validation & Verification. European Physical Journal Web of Conferences. 247 pp. e04012 (2021,4) [Google Scholar]
- L. Lu, Y. Qiu, U. Fischer, Improved solid decomposition algorithms for the CAD-to-MC conversion tool McCad. Fusion Engineering And Design. 124 Pp.1269–1272 (2017) [CrossRef] [Google Scholar]
- T. Tautges, P. Wilson, J. Kraftcheck, B. Smith, D.Henderson, Acceleration Techniques for Direct Use of CAD-Based Geometries in Monte Carlo Radiation Transport. (2009,5) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.