Open Access
Issue |
EPJ Web Conf.
Volume 286, 2023
European Conference on Neutron Scattering 2023 (ECNS 2023)
|
|
---|---|---|
Article Number | 05002 | |
Number of page(s) | 11 | |
Section | Magnetism and Materials | |
DOI | https://doi.org/10.1051/epjconf/202328605002 | |
Published online | 09 October 2023 |
- Y. Shiraki, N. Usami, Edts., Silicon–germanium (SiGe) nanostructures. Production, properties and applications in electronics. Woodhead Publishing, Sawston, Cambridge, UK, Philadelphia, USA (2011). ISBN 978-0-85709-142-0. [Google Scholar]
- E. Hüger, K. Osuch, “Quantum well states in thin (110)-oriented Au films and k-space symmetry, ” Eur. Phys. J. B 37, 149–162 (2004). https://doi.org/10.1140/epjb/e2004-00041-1. [Google Scholar]
- M. Stutzmann, R. A. Street, C. C. Tsai, J. B. Boyce, S. E. Ready, “Structural, optical, and spin properties of hydrogenated amorphous silicongermanium alloys, ” J. Appl. Phys. 66, 569-592 (1989). [CrossRef] [Google Scholar]
- B. Liu, L. Bai, X. Zhang, D. Zhang, C. Wei, J. Sun, Q. Huang, X. Chen, J. Ni, G. Wang, Y, Zhao, “Light management in hydrogenated amorphous silicon germanium solar cells, ” Solar Energy Materials and Solar Cells 128, 1-10 (2014). https://doi.org/10.1016/j.solmat.2014.05.008. [Google Scholar]
- S. Sreejith, J. Ajayan, S. Kollem, B. Sivasankari, “A Comprehensive Review on Thin Film Amorphous Silicon Solar Cells, ” Silicon 14, 8277-8293 (2022). https://doi.org/10.1007/s12633-021-01644-w. [CrossRef] [Google Scholar]
- E. Hüger, F. Strauß, J. Stahn, J. Deubener, M. Bruns, and H. Schmidt, “In-situ Measurement of Self-Atom Diffusion in Solids Using Amorphous Germanium as a Model System,” Scientific Reports 8, 17607 (2018). https://doi.org/10.1038/s41598-018-35915-1. [CrossRef] [PubMed] [Google Scholar]
- P. Heitjans, J. Kärger, Diffusion in condensed matter. methods, materials, models. Springer, Berlin, Germany (2005). [Google Scholar]
- H. Mehrer, Diffusion in solids. Fundamentals, methods, materials, diffusion-controlled processes, Springer, Berlin, Germany (2007). [Google Scholar]
- E. Hüger, D. Uxa, F. Yang, and H. Schmidt, “The Lithiation Onset of Amorphous Silicon Thin-Film Electrodes, ” APL Special Topic New technologies and applications of advanced batteries, Appl. Phys. Lett. 221, 133901 (2022). https://doi.org/10.1063/5.0109610 [Google Scholar]
- K. Zhang, E. Hüger, Y. Li, H. Schmidt, F. Yang, “Review and stress analysis on the lithiation onset of amorphous silicon films,” Batteries 9, 105 (2023). https://doi.org/10.3390/batteries9020105. [CrossRef] [Google Scholar]
- E. Hüger, L. Riedel, J. Zhu, J. Stahn, P. Heitjans, and H. Schmidt, “Lithium niobate for fast cycling in Li-ion batteries: Review and new experimental data,” Batteries 9, 244 (2023). https://doi.org/10.3390/batteries9050244. [CrossRef] [Google Scholar]
- D. Uxa, E. Hüger, K. Meyer, L. Dörrer, H. Schmidt, “Lithium-ion Diffusion in Near-stoichiometric Polycrystalline and Monocrystalline LiCoO2,” Chem. Mater. 35, 3307–3315 (2023). https://doi.org/10.1021/acs.chemmater.3c00359. [CrossRef] [Google Scholar]
- G. L. McVay and A. R. DuCharme, “Diffusion of Ge in SiGe alloys,” Phys. Rev. B 9, 627-631 (1974). [CrossRef] [Google Scholar]
- J. Rahn, E. Hüger, L. Dörrer, B. Ruprecht, P. Heitjans, and H. Schmidt, “A SIMS study on Li diffusion in single crystalline and amorphous LiNbO3,” Defect Diffus. Forum 323-325, 69-74 (2012). https://doi.org/10.4028/www.scientific.net/DDF.323-325.69. [CrossRef] [Google Scholar]
- J. Rahn, E. Hüger, L. Dörrer, B. Ruprecht, P. Heitjans, and H. Schmidt, “Li Self-Diffusion in Lithium Niobate Single Crystals at Low Temperatures,” Phys. Chem. Chem. Phys. 14, 2427 (2012). https://doi.org/10.1039/C2CP23548J [CrossRef] [PubMed] [Google Scholar]
- J. Uhlendorf, B. Ruprecht, E. Witt, C. V. Chandran, L. Dörrer, E. Hüger, F. Strauß, P. Heitjans, and H. Schmidt, “Slow Lithium Transport in Metal Oxides on the Nanoscale,” Z. Phys. Chem. 231, 1423–1442 (2017). https://doi.org/10.1515/zpch-2016-0939. [CrossRef] [Google Scholar]
- E. Hüger, L. Dörrer, and H. Schmidt, “Permeation, Solubility, Diffusion and Segregation of Lithium in Amorphous Silicon Layers,” Chem. Mater. 30, 3254–3264 (2018). https://doi.org/10.1021/acs.chemmater.8b00186. [CrossRef] [Google Scholar]
- E. Hüger, and H. Schmidt, “Li Permeability Increase in Nano-Sized Amorphous Silicon Layers,” J. Phys. Chem. C 122, 28528–28536 (2018). [CrossRef] [Google Scholar]
- J. Uhlendorf, Z. Galazka, and H. Schmidt, “Oxygen diffusion in beta-Ga2O3 single crystals at high temperatures,” Appl. Phys. Lett. 119, 242106 (2021). https://doi.org/10.1063/5.0071729. [CrossRef] [Google Scholar]
- F. Strauß, E. Hüger, J. Julin, F. Munnik, and H. Schmidt, “Lithium Diffusion in Ion-Beam SputterDeposited Lithium-Silicon Layers,” J. Phys. Chem. C 124 8616–8623 (2020). https://doi.org/10.1021/acs.jpcc.0c01244. [CrossRef] [Google Scholar]
- L. Dörrer, P. Tuchel, E. Hüger, R. Heller, and H. Schmidt, “Hydrogen diffusion in proton-exchanged lithium niobate single crystals,” J. Appl. Phys. 129, 135105 (2021). https://doi.org/10.1063/5.0047606. [CrossRef] [Google Scholar]
- D. Uxa, E. Hüger, K. Meyer, L. Dörrer, and H. Schmidt, “Lithium-ion Diffusion in Near-stoichiometric Polycrystalline and Monocrystalline LiCoO2,” Chem. Mater. Submitted Manuscript ID: cm-2023-003599.R1 (2023). [Google Scholar]
- N. R. Zangenberg, J. Lundsgaard Hansen, J. FagePedersen, and A. Nylandsted Larsen, “Ge SelfDiffusion in Epitaxial Si1-xGex Layers,” PRL 87, 125901 (2001). DOI: 10.1103/PhysRevLett.87.125901 [CrossRef] [PubMed] [Google Scholar]
- R. Kube, H. Bracht, J. Lundsgaard Hansen, A. Nylandsted Larsen, E. E. Haller, S. Paul, and W. Lerch, “Composition dependence of Si and Ge diffusion in relaxed Si1−xGex alloys,” J. Appl. Phys. 107, 073520 (2010). https://doi.org/10.1063/1.3380853. [CrossRef] [Google Scholar]
- R. Kube, H. Bracht, E. Hüger, H. Schmidt, J. L. Hansen, A. N. Larsen, J. W. Ager III, E. E. Haller, T. Geue, and J. Stahn, “Contributions of vacancies and self-interstitials to self-diffusion in silicon under thermal equilibrium and nonequilibrium conditions,” Phys. Rev. B 88, 085206 (2013). https://doi.org/10.1103/PhysRevB.88.085206. [CrossRef] [Google Scholar]
- T. Südkamp, H. Bracht, “Self-diffusion in crystalline silicon: A single diffusion activation enthalpy down to 755 °C,” Phys. Rev. B 94, 125208 (2016). https://doi.org/10.1103/PhysRevB.94.125208. [CrossRef] [Google Scholar]
- J. Kirschbaum, T. Teuber, A. Donner, M. Radek, D. Bougeard, R. Böttger, J. Lundsgaard Hansen, A. Nylandsted Larsen, M. Posselt, and H. Bracht, “Self-Diffusion in Amorphous Silicon by Local Bond Rearrangements,” PRL 120, 225902 (2018). DOI: 10.1103/PhysRevLett.120.225902. [CrossRef] [PubMed] [Google Scholar]
- H. Schmidt, M. Gupta, and M. Bruns, “Nitrogen diffusion in amorphous silicon nitride isotope multilayers probed by neutron reflectometry,” Phys. Rev. Lett. 96, 055901 (2006). https://doi.org/10.1103/PhysRevLett.96.055901. [CrossRef] [PubMed] [Google Scholar]
- H. Schmidt, W. Gruber, T. Gutberlet, M. Ay, J. Stahn, U. Geckle, and M. Bruns, “Structural relaxation and self-diffusion in covalent amorphous solids: Silicon nitride as a model system,” J. Appl. Phys. 102, 043516 (2007). https://doi.org/10.1063/1.2770821 [CrossRef] [Google Scholar]
- H. Schmidt, M. Gupta, J. Stahn, T. Gutberlet, and M. Bruns, “How to Measure Self-Diffusivities in the Sub-Nanometer Range,” Acta Mater. 56, 464-470 (2008). https://doi.org/10.1016/j.actamat.2007.10.005. [CrossRef] [Google Scholar]
- E. Hüger, H. Schmidt, J. Stahn, B. Braunschweig, U. Geckle, M. Bruns, “Atomic Transport in Metastable Compounds: A Case Study on Si-C-N,” Phys. Rev. B. 80, R220101 (2009). https://doi.org/10.1103/PhysRevB.80.220101. [CrossRef] [Google Scholar]
- E. Hüger, H. Schmidt, T. Geue, J. Stahn, U. Tietze, D. Lott, A. Markwitz, U. Geckle, and M. Bruns, “Nitrogen Self-Diffusion in Magnetron Sputtered Si-C-N Films,” J. Appl. Phys. 109, 093522 (2011). https://doi.org/10.1063/1.3585780. [CrossRef] [Google Scholar]
- E. Hüger, J. Rahn, J. Stahn, T. Geue, and H. Schmidt, “Diffusivity determination in bulk materials on nanometric length scales,” Phys. Rev. B 85, 214102 (2012). https://doi.org/10.1103/PhysRevB.85.214102. [CrossRef] [Google Scholar]
- E. Hüger, J. Rahn, T. Geue, J. Stahn, P. Heitjans, and H. Schmidt, “Lithium Diffusion in Congruent LiNbO3 Single Crystals at Low Temperatures Probed by Neutron Reflectometry,” PCCP 16, 3670-3674 (2014). https://doi.org/10.1039/C3CP54939A. [CrossRef] [PubMed] [Google Scholar]
- S. Chakravarty, E. Hüger, H. Schmidt, J. Stahn, M. Horisberger, and N. P. Lalla, “Self-diffusivities in Ultra-Fine Grained Metals Using Neutron Reflectometry,” Scripta Mater. 61, 1117 (2009). https://doi.org/10.1016/j.scriptamat.2009.08.035. [CrossRef] [Google Scholar]
- H. Schmidt, S. Chakravarty, M. Jiang, E. Hüger, P. K. Parida, T. Geue, J. Stahn, U. Tietze, D. Lott, “Grain Boundary Self-diffusion in Fe Films with a Stable Nanostructure,” J. Mater. Sci. 47, 4087–4092 (2012). https://doi.org/10.1007/s10853-012-6262-0. [CrossRef] [Google Scholar]
- E. Hüger, R. Kube, H. Bracht, J. Stahn, T. Geue, and H. Schmidt, “A neutron reflectometry study on silicon self-diffusion at 900 °C,” Phys. Status Solidi B 11, 2108-2112 (2012). https://doi.org/10.1002/pssb.201248330. [CrossRef] [Google Scholar]
- E. Hüger, U. Tietze, D. Lott, H. Bracht, E. E. Haller, D. Bougeard, and H. Schmidt, “Selfdiffusion in Germanium Isotope Multilayers at Low Temperatures,” Appl. Phys. Lett. 93, 162104 (2008). https://doi.org/10.1063/1.3002294. [CrossRef] [Google Scholar]
- F. Strauß, L. Dörrer, T. Geue, J. Stahn, A. Koutsioubas, S. Mattauch, and H. Schmidt, “Selfdiffusion in amorphous silicon,” Phys. Rev. Lett. 116, 025901 (2016). https://doi.org/10.1103/PhysRevLett.116.025901. [CrossRef] [PubMed] [Google Scholar]
- E. Hüger, J. Stahn, and H. Schmidt, “Activation energy of diffusion determined from a single in-situ neutron reflectometry experiment,” Mat. Res. Lett. 11, 53 (2023). https://doi.org/10.1080/21663831.2022.2114814. [CrossRef] [Google Scholar]
- E. Hüger, L. Dörrer, J. Rahn, T. Panzner, J. Stahn, G. Lilienkamp, and H. Schmidt, “Lithium Transport through Nanosized Amorphous Silicon Layers,” Nano Lett. 13, 1237–1244 (2013). https://doi.org/10.1021/nl304736t. [CrossRef] [PubMed] [Google Scholar]
- E. Hüger, J. Stahn, and H. Schmidt, “Neutron reflectometry to measure in-situ Li permeation through ultrathin silicon layers and interfaces,” J. Electrochem. Soc. 162, A7104 (2015). DOI 10.1149/2.0131513jes. [Google Scholar]
- E. Hüger, J. Stahn, P. Heitjans, and H. Schmidt, “Neutron Reflectometry to Measure in-situ the Rate Determining Step of Lithium Ion Transport through Thin Silicon Layers and Interfaces,” PCCP 21, 16444-16450 (2019). https://doi.org/10.1039/C9CP01222B. [CrossRef] [PubMed] [Google Scholar]
- F. Strauß, E. Hüger, P. Heitjans, T. Geue, J. Stahn, and H. Schmidt, “Li Permeation through Thin Lithium-Silicon Films for Battery Applications Investigated by Neutron Reflectometry,” Energy Technol. 4, 1582-1587 (2017). https://doi.org/10.1002/ente.201600209. [Google Scholar]
- E. Hüger, L. Dörrer, R. Yimnirun, J. Jutimoosik, J. Stahn, and A. Paul, “Lithium permeation within lithium niobate multilayers with ultrathin chromium, silicon and carbon spacer layers,” PCCP 20, 23233-23243 (2018). https://doi.org/10.1039/C8CP03345E. [CrossRef] [PubMed] [Google Scholar]
- B. Jerliu, L. Dörrer, E. Hüger, G. Borchardt, R. Steitz, U. Geckle, V. Oberst, M. Bruns, O. Schneider, and H. Schmidt, “Neutron Reflectometry Studies on the Lithiation of Amorphous Silicon Electrodes in Lithium-Ion Batteries,” PCCP 15, 7777-7784 (2013). DOI: 10.1039/c3cp44438d. [CrossRef] [PubMed] [Google Scholar]
- B. Jerliu, L. Dörrer, E. Hüger, B.-K. Seidlhofer, R. Steitz, U. Geckle, V. Oberst, M. Bruns, and H. Schmidt, “Volume Expansion during Lithiation of Amorphous Silicon Thin Film Electrodes Studied by In-Operando Neutron Reflectometry,” J. Phys. Chem. C 118, 9395–9399 (2014). https://doi.org/10.1021/jp502261t. [CrossRef] [Google Scholar]
- B.-K. Seidlhofer, B. Jerliu, M. Trapp, E. Hüger, S. Risse, R. Cubitt, H. Schmidt, R. Steitz, M. Ballauff, “Lithiation of Crystalline Silicon As Analyzed by Operando Neutron Reflectivity,” ACS Nano 10, 7458–7466 (2016). https://doi.org/10.1021/acsnano.6b02032. [CrossRef] [PubMed] [Google Scholar]
- B. Jerliu, E. Hüger, M. Horisberger, J. Stahn, and H. Schmidt, “Irreversible lithium storage during lithiation of amorphous silicon thin film electrodes studied by in-situ neutron reflectometry,” J. Power Sources 359, 415-421 (2017). https://doi.org/10.1016/j.jpowsour.2017.05.095. [CrossRef] [Google Scholar]
- B. Jerliu, E. Hüger, L. Dörrer, B.-K. Seidlhofer, R. Steitz, M. Horisberger, and H. Schmidt, “Lithium Insertion into Silicon Electrodes Studied by Cyclic Voltammetry and Operando Neutron Reflectometry,” PCCP 20, 23480-23491 (2018). https://doi.org/10.1039/C8CP03540G. [CrossRef] [PubMed] [Google Scholar]
- D. Uxa, B. Jerilu, E. Hüger, L. Dörrer, M. Horisberger, J. Stahn, and H. Schmidt, “On the Lithiation Mechanism of Amorphous Silicon Electrodes in Li-Ion Batteries,” J. Phys. Chem. C 123, 22027–22039 (2019). https://doi.org/10.1021/acs.jpcc.9b06011. [CrossRef] [Google Scholar]
- H. Schmidt, B. Jerliu, E. Hüger, and J. Stahn, “Volume Expansion of Amorphous Silicon Electrodes during Potentiostatic Lithiation of LiIon Batteries,” Electrochem. Commun. 115, 106738 (2020). https://doi.org/10.1016/j.elecom.2020.106738. [CrossRef] [Google Scholar]
- Available online: http://www.ncnrs.nist.gov/resources/sldcalc.html (accessed on 22 December 2022). [Google Scholar]
- A. Pedersen, L. Pizzagalli, H. Jonsson, “Atomic and electronic structures of a vacancy in amorphous silicon,” Phys. Rev. B 101, 054204 (2020). DOI: 10.1103/PhysRevB.101.054204 [CrossRef] [Google Scholar]
- M. W. Cleveland, M. J. Demkowicz, “Persistence of negative vacancy and self-interstitial formation energies in atomistic models of amorphous silicon,” Phys. Rev. Mat. 6, 013611 (2022). https://doi.org/10.1103/PhysRevMaterials.6.013611. [Google Scholar]
- J.R. Weber, A. Janotti, C. G. Vanm de Walle, “Dangling bonds and vacancies in germanium,” Phys. Rev. B 87, 035203 (2013). DOI: 10.1103/PhysRevB.87.035203. [CrossRef] [Google Scholar]
- M. Posselt, H. Bracht, M. Ghorbani-Asl, D. Radic, “Atomic mechanisms of self-diffusion in amorphous silicon,” AIP Advances 12, 115325 (2022). doi: 10.1063/5.0111037. [CrossRef] [Google Scholar]
- E. Hüger, C. Jin, K. Meyer, D. Uxa, and F. Yang, “Invited: Investigation of Carbon/Copper Multilayer to Examine the Influence of Copper Coating on the Li-Storage Performance of Carbon,” Energies 16, 2740 (2023). https://doi.org/10.3390/en16062740. [CrossRef] [Google Scholar]
- J. Stahn, A. Glavic. “Focusing neutron reflectometry,” Nucl. Instrum. Methods Phys. Res. Sect. A. 821, 44–54 (2016). [CrossRef] [Google Scholar]
- C. Braun, Parratt32 or the reflectometry tool, HMI, Berlin, [http://www.helmholtz-berlin.de]. [Google Scholar]
- L.W. Veldhuizen, C.H.M. van der Werf, Y. Kuanga, N.J. Bakker, S.J. Yun, R.E.I. Schropp, “Optimization of hydrogenated amorphous silicon germanium thin films and solar cells deposited by hot wire chemical vapor deposition,” Thin Solid Films 595, 226–230 (2015). http://dx.doi.org/10.1016/j.tsf.2015.05.055. [CrossRef] [Google Scholar]
- A. G. Hernandez, A. E. Escobosa-Echavarría, Y. Kudriavtsev, “White luminescence emission from silicon implanted germanium,” Appl. Surf. Sci. 428, 1098–1105 (2018). https://doi.org/10.1016/j.apsusc.2017.09.234. [CrossRef] [Google Scholar]
- T. de Vrijer, B. Bouazzata, A. H. M. Smets, “Spectroscopic review of hydrogenated, carbonated and oxygenated group IV alloys,” Vibrational Spectroscopy 121, 103387 (2022). https://doi.org/10.1016/j.vibspec.2022.103387. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.