Open Access
Issue |
EPJ Web Conf.
Volume 288, 2023
ANIMMA 2023 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
|
|
---|---|---|
Article Number | 05002 | |
Number of page(s) | 8 | |
Section | Nuclear Power Reactors and Nuclear Fuel Cycle | |
DOI | https://doi.org/10.1051/epjconf/202328805002 | |
Published online | 21 November 2023 |
- Working Group, I. I. I. contribution to the, W. G. I. I. I. Sixth, and Assessment Report. Climate change 2022 mitigation of climate change. Technical report, Intergovernmental Panel on Climate Change, 2022. [Google Scholar]
- IEA International Energy Agency. Global energy and climate model documentation. Technical report, International Energy Agency, 2021. [Google Scholar]
- Katrien Van Tichelen, Graham Kennedy, Fabio Mirelli, Alessandro Marino, Antonio Toti, Davide Rozzia, Edoardo Cascioli, Steven Keijers, and Philippe Planquart. Advanced liquid-metal thermal-hydraulic research for MYRRHA. Nuclear Technology, 206(2):150–163, 2020. [CrossRef] [Google Scholar]
- A. Shams, F. Roelofs, I. Tiselj, J. Oder, Y. Bartosiewicz, M. Duponcheel, B. Niceno, W. Guo, E. Stalio, D. Angeli, A. Fregni, S. Buckingham, L. K. Koloszar, A. Villa Ortiz, P. Planquart, C. Narayanan, D. Lakehal, K. van Tichelen, W. Jäger, and T. Schaub. A collaborative effort towards the accurate prediction of turbulent flow and heat transfer in low-prandtl number fluids. Nuclear Engineering and Design, 366:110750, sep 2020. [CrossRef] [Google Scholar]
- H.I. Abu-Mulaweh, B.F. Armaly, and Chen T.S. Turbulent mixed convection flow over a backward-facing step. International Journal of Heat and Mass Transfer, 2001. [Google Scholar]
- Tohru Takeshita, Takehiko Segawa, James A. Glazier, and Masaki Sano. Thermal turbulence in mercury. Phys. Rev. Lett., 76:1465–1468, February 1996. [CrossRef] [PubMed] [Google Scholar]
- H.I. Abu-Mulaweh, B.F. Armaly, and Chen T.S. Turbulent mixed convection flow over a backward-facing step. International Journal of Heat and Mass Transfer, 2001. [Google Scholar]
- G. C. Vliet and C. K. Liu. An experimental study of turbulent natural convection boundary layers. Journal of Heat Transfer, 1969. [Google Scholar]
- M. E. Negretti T Caudwell, J. B Flòr. Convection at an isothermal wall in an enclosure and establishment of stratification. Journal of Fluid Mechanics, 2016. [Google Scholar]
- A. Cramer, C. Zhang, and S. Eckert. Local flow structures in liquid metals measured by ultrasonic Doppler velocimetry. Flow Measurement and Instrumentation, 15(3):145–153, 2004. Ultrasonic Flowmetering. [CrossRef] [Google Scholar]
- Lukas Zwirner, Mohammad S. Emran, Felix Schindler, Sanjay Singh, Sven Eckert, Tobias Vogt, and Olga Shishkina. Dynamics and length scales in vertical and convection of liquid metals. Journal of Fluid Mechanics, 2022. [Google Scholar]
- T. Zurner, F. Schindler, T. Vogt, S. Eckert, and J. Schumacher. Combined measurement of velocity and and temperature in liquid metal convection. J. Fluid Mech. (2019), vol. 876, pp. 1108–1128, 2019. [CrossRef] [Google Scholar]
- Thomas Schaub, Frederik Arbeiter, Wolfgang Hering, and Robert Stieglitz. Forced and mixed convection experiments in a confined vertical backward facing step at low-prandtl number. Experiments in Fluids, 63(1), dec 2021. [Google Scholar]
- Tohru Takeshita, Takehiko Segawa, James A. Glazier, and Masaki Sano. Thermal turbulence in mercury. Phys. Rev. Lett., 76:1465–1468, February 1996. [CrossRef] [PubMed] [Google Scholar]
- S. Cioni, S. Ciliberto, and J. Sommeria. Experimental study of highRayleigh-number convection in mercury and water. [Google Scholar]
- D. Auliano, M. Auliano, and E. Næss. Near wall temperature measurements and turbulent features in a waterflow at transition reynolds numbers in a square heated asymmetric cavity channel. Thermal Science and Engineering Progress, 2023. [Google Scholar]
- A. Aubert, S. Poncet, P. Le Gal, S. Viazzo, and M. Le Bars. Velocity and temperature measurements in a turbulent water-filled taylor-couette-poiseuille system. International Journal of Thermal Sciences, 2015. [Google Scholar]
- Mohammed Alsailani. Numerical simulation of transition in liquid metals. Master’s thesis, Von Karman Institute for Fluid Dynamics, 2021. [Google Scholar]
- J. Oder, M. Alsailani, L. Koloszar, W. Munters, and D. Laboureur. Direct numerical simulation of differentially heatedcavity at low prandtl numbers. In Eleventh International Conference on Computational Fluid Dynamics, 2022. [Google Scholar]
- David G. Malcolm. Thermo-anemometry in magneto-hydrodynamics. Phd thesis, University of Warwick, 1968. [Google Scholar]
- Marc Dierckx. Feasibility of ultrasonic inspection techniques for use in the MYRRHA reactor. Phd thesis, Katholieke Universiteit Leuven, 2014. [Google Scholar]
- S. Eckert, S. Franke, T. Gundrum, G. Gerbeth, and J.-C. Willemetz. Applications of Ultrasonic Doppler Velocimetry to flow measurements in hot liquid metals. In 8th International Conference on Electromagnetic Processing of Materials, Oct 2015, Cannes, France, 2015. [Google Scholar]
- Yoshitaka Ueki, Yuya Noguchi, Juro Yagi, Teruya Tanaka, Takehiko Yokomine, Masaru Hirabayashi, Kuniaki Ara, Tomoaki Kunugi, and Akio Sagara. Ultrasonic Doppler Velocimetry experiment of lead-lithium flow with Oroshhi-2 loop. Fusion Science and Technology, pages 1–7, June 2017. [CrossRef] [Google Scholar]
- Clemens Naumann. Unsteady temperature measurement in hot/cold heated cavity filled with liquid metal. Master’s thesis, TU Ilmenau, 2022. [Google Scholar]
- T. Carlesi, D. Laboureur, P. Planquart, J. Pacio, K. van Tichelen, and P. Megret. Experimental analysis of the dynamic behaviour of fbg temperature sensors. In 25th Annual Symposium of the IEEE Photonics Benelux Chapter, 2021. [Google Scholar]
- NEA. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies. Nuclear Energy Agency, 2 edition, 2015. [Google Scholar]
- J. A. Glazier and A. Naert. Evidence against ultrahard thermal turbulence at very high Rayleigh numbers. Nature, 398:307–310, 1999. [CrossRef] [Google Scholar]
- Janet D. Scheel and Jörg Schumacher. Global and local statistics in turbulent convection at low Prandtl numbers. Journal of Fluid Mechanics, 802:147–173, 2016. [CrossRef] [Google Scholar]
- S. Paolucci. The differentially heated cavity. Sadhana, 1994. [Google Scholar]
- R. J. A. Janssen and R. A. W. M. Henkes. Influence of prandtl and number on and instability mechanisms and transition and in a differentially heated square cavity. Journal of Fluid Mechanics, 1994. [PubMed] [Google Scholar]
- Evaluation of measurement data — Guide to the expression of uncertainty in measurement. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.