Open Access
Issue
EPJ Web Conf.
Volume 288, 2023
ANIMMA 2023 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
Article Number 06009
Number of page(s) 4
Section Nuclear Safeguards, Homeland Security and CBRN
DOI https://doi.org/10.1051/epjconf/202328806009
Published online 21 November 2023
  1. S. Y. Del Valle, J. M. Hyman, N. Chitnis, “Mathematical models of contact patterns between age groups for predicting the spread of infectious diseases” Mathematical biosciences and engineering: MBE, vol. 10, no. 5-6, pp. 1475–1497, 2013, DOI. 10.3934/mbe.2013.10.1475. [CrossRef] [Google Scholar]
  2. A. Din, K. Shah, A. Seadawy, H. Alrabaiah, D. Baleanu, “On a new conceptual mathematical model dealing the current novel coronavirus-19 infectious disease”, Results in Physics, vol. 19, 2020, 103510, ISSN 2211-3797, DOI. 10.1016/j.rinp.2020.103510. [Google Scholar]
  3. C. J. E. Metcalf, D. H. Morris, S. W. Park, “Mathematical models to guide pandemic response”. Science (New York, N.Y.), vol. 369, no. 6502, pp. 368–369, July 2020, DOI.10.1126/science.abd1668. [CrossRef] [PubMed] [Google Scholar]
  4. Y. Mohamadou, A. Halidou, P. T. Kapen, “A review of mathematical modeling, artificial intelligence and datasets used in the study, prediction and management of COVID-19”, Applied intelligence (Dordrecht, Netherlands), vol. 50, no. 11, pp. 3913–3925, July 2020, DOI.10.1007/s10489-020-01770-9. [PubMed] [Google Scholar]
  5. O. Cenciarelli, S. Pietropaoli, A. Malizia, M. Carestia, F. D’Amico, A. Sassolini, D. Di Giovanni, S. Rea, V. Gabbarini, A. Tamburrini, L. Palombi, C. Bellecci, P. Gaudio, “Ebola virus disease 2013-2014 outbreak in west Africa: an analysis of the epidemic spread and response”, International journal of microbiology, 769121, March 2015, DOI. 10.1155/2015/769121. [PubMed] [Google Scholar]
  6. W. J. Lee, “Lessons from radiation epidemiology”, Epidemiology and Health, vol. 40, e2018057, November 2018, DOI. 10.4178/epih.e2018057. [CrossRef] [PubMed] [Google Scholar]
  7. S. Biancotto, A. Malizia, M. Pinto, G. M. Contessa, A. Coniglio, M. D’Arienzo, “Analysis of a dirty bomb attack in a large metropolitan area: simulate the dispersion of radioactive materials”, Journal of Instrumentation, vol. 15, Feb. 2020, DOI. 10.1088/17480221/15/02/P02019. [Google Scholar]
  8. A. Malizia, A. Chierici, S. Biancotto, M. D’Arienzo, G. M. Ludovici, F. d’Errico, G. Manenti, F. Marturano, “The hotspot code as a tool to improve risk analysis during emergencies: Predicting I-131 and Cs-137 dispersion in the Fukushima nuclear accident”, International Journal of Safety and Security Engineering, vol. 11, no. 4, pp. 473-186, August 2021, DOI. 10.18280/ijsse.110421. [CrossRef] [Google Scholar]
  9. D. Di Giovanni, et al., “Two realistic scenarios of intentional release of radionuclides (Cs-137, Sr-90) the use of the HotSpot code to forecast contamination extent”, WSEAS Transactions on Environment and Development, vol. 10, pp. 106-122, January 2014. [Google Scholar]
  10. R. Gallo, et al., “Development of a georeferencing software for radiological diffusion in order to improve the safety and security of first responders”, Defence S&T Tech. Bulletin, vol. 6, no. 1, pp. 21-32, February 2013. [Google Scholar]
  11. J. V. Douglas, et al., “STEM: An Open Source Tool for Disease Modeling”, Health security, vol. 17, no. 4, pp. 291–306, Jul/Aug 2019, DOI. 10.1089/hs.2019.0018. [CrossRef] [PubMed] [Google Scholar]
  12. F. Baldassi, et al., “Testing the accuracy ratio of the Spatio-Temporal Epidemiological Modeler (STEM) through Ebola haemorrhagic fever outbreaks”, Epidemiology and infection, vol. 144, no. 7, pp. 1463–1472, Dec. 2015, DOI. 10.1017/S0950268815002939. [Google Scholar]
  13. R. K. Meentemeyer, S. E. Haas, T. Václavík, “Landscape epidemiology of emerging infectious diseases in natural and human-altered ecosystems”, Annual review of phytopathology, vol. 50, pp. 379–402, June 2012, DOI. 10.1146/annurev-phyto-081211-172938. [CrossRef] [PubMed] [Google Scholar]
  14. A. Malizia, et al., “The free license codes as decision support system (DSS) for the emergency planning to simulate radioactive releases in case of accidents in the new generation energy plants”, WSEAS Transactions on Environment and Development, vol. 10, no. 1, pp. 453464, January 2014. [Google Scholar]
  15. A. Abate, et al., “The local effects of a global disaster: Case study on the Fukushima radiological emergency management in Italy”, Defence S&T Tech. Bulletin, vol. 9, no. 2, pp. 126-133, 2016. [Google Scholar]
  16. I. Cacciotti, et al., “Simulation of Caesium-137 (137CS) local diffusion as a consequence of the Chernobyl accident using HOTSPOT”, Defence S&T Tech. Bulletin, vol. 1, no. 1, pp. 18-26, 2014. [Google Scholar]
  17. A. Rump, S. Eder, C. Hermann, A. Lamkowski, P. Ostheim, M. Abend, M. Port, “Estimation of radiation-induced health hazards from a “dirty bomb” attack with radiocesium under different assault and rescue conditions”, Military Medical Research, vol. 8, no. 1, Dec. 2021, DOI. 10.1186/s40779-021-00349-w. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.