Open Access
Issue
EPJ Web Conf.
Volume 288, 2023
ANIMMA 2023 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
Article Number 07007
Number of page(s) 6
Section Decommissioning, Dismantling and Remote Handling
DOI https://doi.org/10.1051/epjconf/202328807007
Published online 21 November 2023
  1. F. Mascarich, T. Wilson, C. Papachristos, and K. Alexis, “Radiation Source Localization in GPS-Denied Environments Using Aerial Robots, ” in 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD: IEEE, May 2018, pp. 6537–6544. doi: 10.1109/ICRA.2018.8460760. [CrossRef] [Google Scholar]
  2. I. Tsitsimpelis, C. J. Taylor, B. Lennox, and M. J. Joyce, “A review of ground-based robotic systems for the characterization of nuclear environments, ” Progress in Nuclear Energy, vol. 111, pp. 109–124, Mar. 2019, doi: 10.1016/j.pnucene.2018.10.023. [CrossRef] [Google Scholar]
  3. B. Bird et al., “A Robot to Monitor Nuclear Facilities: Using Autonomous Radiation-Monitoring Assistance to Reduce Risk and Cost, ” IEEE Robot. Automat. Mag., vol. 26, no. 1, pp. 35–43, Mar. 2019, doi: 10.1109/MRA.2018.2879755. [CrossRef] [Google Scholar]
  4. S. R. White et al., “Radiation Mapping and Laser Profiling Using a Robotic Manipulator, ” Front. Robot. AI, vol. 7, p. 499056, Nov. 2020, doi: 10.3389/frobt.2020.499056. [CrossRef] [Google Scholar]
  5. P. G. Martin et al., “3D unmanned aerial vehicle radiation mapping for assessing contaminant distribution and mobility, ” International Journal of Applied Earth Observation and Geoinformation, vol. 52, pp. 12–19, Oct. 2016, doi: 10.1016/j.jag.2016.05.007. [CrossRef] [Google Scholar]
  6. Martin, Peter G. & Scott, Thomas & Payton, Oliver & Fardoulis, John. (2017). High-Resolution Aerial Radiation Mapping for Nuclear Decontamination and Decommissioning. [Google Scholar]
  7. P. Martin, J. Moore, J. Fardoulis, O. Payton, and T. Scott, “Radiological Assessment on Interest Areas on the Sellafield Nuclear Site via Unmanned Aerial Vehicle, ” Remote Sensing, vol. 8, no. 11, p. 913, Nov. 2016, doi: 10.3390/rs8110913. [CrossRef] [Google Scholar]
  8. Abd. H. Zakaria, Y. M. Mustafah, J. Abdullah, N. Khair, and T. Abdullah, “Development of Autonomous Radiation Mapping Robot, ” Procedia Computer Science, vol. 105, pp. 81–86, 2017, doi: 10.1016/j.procs.2017.01.203. [CrossRef] [Google Scholar]
  9. Y. Sato et al., “Radiation imaging using a compact Compton camera inside the Fukushima Daiichi Nuclear Power Station building, ” Journal of Nuclear Science and Technology, vol. 55, no. 9, pp. 965–970, Sep. 2018, doi: 10.1080/00223131.2018.1473171. [CrossRef] [Google Scholar]
  10. K. Vetter, R. Barnowksi, A. Haefner, T. H. Y. Joshi, R. Pavlovsky, and B. J. Quiter, “Gamma-Ray imaging for nuclear security and safety: Towards 3-D gamma-ray vision, ” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 878, pp. 159–168, Jan. 2018, doi: 10.1016/j.nima.2017.08.040. [CrossRef] [Google Scholar]
  11. Y. Sato, Y. Terasaka, S. Ozawa, Y. Tanifuji, and T. Torii, “A 3D radiation image display on a simple virtual reality system created using a game development platform, ” J. Inst., vol. 13, no. 08, pp. T08011–T08011, Aug. 2018, doi: 10.1088/1748-0221/13/08/T08011. [Google Scholar]
  12. T. Baca et al., “Gamma Radiation Source Localization for Micro Aerial Vehicles with a Miniature Single-Detector Compton Event Camera, ” in 2021 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece: IEEE, Jun. 2021, pp. 338–346. doi: 10.1109/ICUAS51884.2021.9476766. [CrossRef] [Google Scholar]
  13. K. D. Jarman, E. A. Miller, R. S. Wittman, and C. J. Gesh, “Bayesian Radiation Source Localization, ” Nuclear Technology, vol. 175, no. 1, pp. 326–334, Jul. 2011, doi: 10.13182/NT10-72. [CrossRef] [Google Scholar]
  14. H. Wan, T. Zhang, and Y. Zhu, “Detection and localization of hidden radioactive sources with spatial statistical method, ” Ann Oper Res, vol. 192, no. 1, pp. 87–104, Jan. 2012, doi: 10.1007/s10479-010-0805-z. [CrossRef] [Google Scholar]
  15. H. E. Baidoo-Williams, “Maximum Likelihood Localization of Radiation Sources with unknown Source Intensity.” arXiv, Oct. 10, 2016. Accessed: Aug. 02, 2023. [Online]. Available: http://arxiv.org/abs/1608.00427 [Google Scholar]
  16. H. E. Baidoo-Williams, R. Mudumbai, E. Bai, and S. Dasgupta, “Some theoretical limits on nuclear source localization and tracking, ” in 2015 Information Theory and Applications Workshop (ITA), San Diego, CA, USA: IEEE, Feb. 2015, pp. 270–274. doi: 10.1109/ITA.2015.7309000. [Google Scholar]
  17. G. Cordone et al., “Improved multi-resolution method for MLE-based localization of radiation sources, ” in 2017 20th International Conference on Information Fusion (Fusion), Xi’an, China: IEEE, Jul. 2017, pp. 1–8. doi: 10.23919/ICIF.2017.8009626. [Google Scholar]
  18. W. Gao, W. Wang, H. Zhu, G. Huang, D. Wu, and Z. Du, “Robust Radiation Sources Localization Based on the Peak Suppressed Particle Filter for Mixed Multi-Modal Environments, ” Sensors, vol. 18, no. 11, p. 3784, Nov. 2018, doi: 10.3390/s18113784. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.