Open Access
Issue
EPJ Web Conf.
Volume 288, 2023
ANIMMA 2023 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
Article Number 09003
Number of page(s) 6
Section Environmental and Medical Sciences
DOI https://doi.org/10.1051/epjconf/202328809003
Published online 21 November 2023
  1. W. D. Newhauser and R. Zhang, ‘The physics of proton therapy’, Phys Med Biol, vol. 60, no. 8, pp. R155-209, Apr. 2015, doi: 10.1088/0031-9155/60/8/R155. [CrossRef] [PubMed] [Google Scholar]
  2. A. J. Lomax, ‘Intensity modulated proton therapy and its sensitivity to treatment uncertainties 1: the potential effects of calculational uncertainties’, Phys. Med. Biol., vol. 53, no. 4, p. 1027, 2008. [CrossRef] [PubMed] [Google Scholar]
  3. K. S. Ytre-Hauge, K. Skjerdal, J. Mattingly, and I. Meric, ‘A Monte Carlo feasibility study for neutron based real-time range verification in proton therapy’, Sci. Rep., vol. 9, no. 1, p. 2011, Feb. 2019, doi: 10.1038/s41598-019-38611-w. [CrossRef] [Google Scholar]
  4. I. Meric et al., ‘A hybrid multi-particle approach to range assessment-based treatment verification in particle therapy’, Sci. Rep., vol. 13, no. 1, Art. no. 1, Apr. 2023, doi: 10.1038/s41598-023-33777-w. [CrossRef] [Google Scholar]
  5. N. P. Giha et al., ‘Organic glass scintillator bars with dual-ended readout’, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip., vol. 1014, p. 165676, Oct. 2021, doi: 10.1016/j.nima.2021.165676. [CrossRef] [Google Scholar]
  6. J. M. Verburg, K. Riley, T. Bortfeld, and J. Seco, ‘Energyand time-resolved detection of prompt gamma-rays for proton range verification’, Phys. Med. Biol., vol. 58, no. 20, p. L37, Sep. 2013, doi: 10.1088/0031-9155/58/20/L37. [CrossRef] [PubMed] [Google Scholar]
  7. F. Hueso-González, M. Rabe, T. A. Ruggieri, T. Bortfeld, and J. M. Verburg, ‘A full-scale clinical prototype for proton range verification using prompt gamma-ray spectroscopy’, Phys. Med. Biol., vol. 63, no. 18, p. 185019, Sep. 2018, doi: 10.1088/1361-6560/aad513. [CrossRef] [Google Scholar]
  8. P. Magalhaes Martins, H. Freitas, T. Tessonnier, B. Ackermann, S. Brons, and J. Seco, ‘Towards real-time PGS range monitoring in proton therapy of prostate cancer’, Sci. Rep., vol. 11, no. 1, Art. no. 1, Jul. 2021, doi: 10.1038/s41598021-93612-y. [CrossRef] [Google Scholar]
  9. T. He, R. P. Gardner, and K. Verghese, ‘The Monte Carlo—Library Least-Squares approach for energy-dispersive x-ray fluorescence analysis’, Appl. Radiat. Isot., vol. 44, no. 10, pp. 1381–1388, Oct. 1993, doi: 10.1016/09698043(93)90089-S. [CrossRef] [Google Scholar]
  10. R. P. Gardner and L. Xu, ‘Status of the Monte Carlo library least-squares (MCLLS) approach for non-linear radiation analyzer problems’, Radiat. Phys. Chem., vol. 78, no. 10, pp. 843–851, Oct. 2009, doi: 10.1016/j.radphyschem.2009.04.023. [CrossRef] [Google Scholar]
  11. I. Meric, G. A. Johansen, M. B. Holstad, J. Wang, and R. P. Gardner, ‘Produced water characterization by prompt gamma-ray neutron activation analysis’, Meas. Sci. Technol., vol. 22, no. 12, p. 125701, Oct. 2011, doi: 10.1088/09570233/22/12/125701. [CrossRef] [Google Scholar]
  12. I. Meric, G. A. Johansen, M. B. Holstad, J. Mattingly, and R. P. Gardner, ‘On the treatment of ill-conditioned cases in the Monte Carlo library least-squares approach for inverse radiation analyzers’, Meas. Sci. Technol., vol. 23, no. 5, p. 055603, Apr. 2012, doi: 10.1088/0957-0233/23/5/055603. [CrossRef] [Google Scholar]
  13. R. P. Gardner, A. Sood, Y. Y. Wang, L. Liu, P. Guo, and R. J. Gehrke, ‘Single peak versus library least-squares analysis methods for the PGNAA analysis of vitrified waste’, Appl. Radiat. Isot., vol. 48, no. 10, pp. 1331–1335, Oct. 1997, doi: 10.1016/S0969-8043(97)00127-9. [CrossRef] [Google Scholar]
  14. S. Agostinelli et al., ‘Geant4—a simulation toolkit’, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip., vol. 506, no. 3, pp. 250–303, Jul. 2003, doi: 10.1016/S0168-9002(03)01368-8. [CrossRef] [Google Scholar]
  15. J. Allison et al., ‘Geant4 developments and applications’, IEEE Trans. Nucl. Sci., vol. 53, no. 1, pp. 270–278, Feb. 2006, doi: 10.1109/TNS.2006.869826. [Google Scholar]
  16. J. Allison et al., ‘Recent developments in Geant4’, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip., vol. 835, pp. 186–225, Nov. 2016, doi: 10.1016/j.nima.2016.06.125. [CrossRef] [Google Scholar]
  17. R. Brun and F. Rademakers, ‘ROOT — An object oriented data analysis framework’, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip., vol. 389, no. 1, pp. 81–86, Apr. 1997, doi: 10.1016/S01689002(97)00048-X. [CrossRef] [Google Scholar]
  18. H. Klein and S. Neumann, ‘Neutron and photon spectrometry with liquid scintillation detectors in mixed fields’, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip., vol. 476, no. 1, pp. 132–142, Jan. 2002, doi: 10.1016/S0168-9002(01)01410-3. [CrossRef] [Google Scholar]
  19. J. Turko et al., ‘Characterization of organic glass scintillator bars and their potential for a hybrid neutron/gamma ray imaging system for proton radiotherapy range verification’, Submitted to. JINST. [Google Scholar]
  20. I. Miller, T. W. Holmes, and R. P. Gardner, ‘An analytical approach for treating background in spectral analysis measurements’, Radiat. Phys. Chem., vol. 116, pp. 87–91, Nov. 2015, doi: 10.1016/j.radphyschem.2015.01.018. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.