Open Access
Issue
EPJ Web Conf.
Volume 288, 2023
ANIMMA 2023 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
Article Number 10018
Number of page(s) 6
Section Current Trends in Development Radiation Detectors
DOI https://doi.org/10.1051/epjconf/202328810018
Published online 21 November 2023
  1. H. Krim and M. Viberg, “Two decades of array signal processing research: the parametric approach, ” IEEE signal processing magazine, vol. 13, no. 4, pp. 67–94, 1996. [CrossRef] [Google Scholar]
  2. H. L. Van Trees, Optimum array processing: Part IV of detection, estimation, and modulation theory. John Wiley & Sons, 2002. [CrossRef] [Google Scholar]
  3. A. Nehorai and E. Paldi, “Vector-sensor array processing for electromagnetic source localization, ” IEEE transactions on signal processing, vol. 42, no. 2, pp. 376–398, 1994. [CrossRef] [Google Scholar]
  4. W. Cash, “Parameter estimation in astronomy through application of the likelihood ratio, ” Astrophysical Journal, Part 1, vol. 228, Mar. 15, 1979, p. 939-947., vol. 228, pp. 939–947, 1979. [CrossRef] [Google Scholar]
  5. J. Shi, F. Wen, and T. Liu, “Nested mimo radar: coarrays, tensor modeling, and angle estimation, ” IEEE Transactions on Aerospace and Electronic Systems, vol. 57, no. 1, pp. 573–585, 2020. [Google Scholar]
  6. R. Schmidt, “Multiple emitter location and signal parameter estimation, ” IEEE transactions on antennas and propagation, vol. 34, no. 3, pp. 276–280, 1986. [CrossRef] [Google Scholar]
  7. C. Knapp and G. Carter, “The generalized correlation method for estimation of time delay, ” IEEE transactions on acoustics, speech, and signal processing, vol. 24, no. 4, pp. 320–327, 1976. [CrossRef] [Google Scholar]
  8. B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach to spatial filtering, ” IEEE assp magazine, vol. 5, no. 2, pp. 4–24, 1988. [CrossRef] [Google Scholar]
  9. J. Litva and T. K. Lo, Digital beamforming in wireless communications. Artech House, Inc., 1996. [Google Scholar]
  10. P. Stoica and K. C. Sharman, “Maximum likelihood methods for direction-of-arrival estimation, ” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 38, no. 7, pp. 1132–1143, 1990. [CrossRef] [Google Scholar]
  11. A. Barthelme and W. Utschick, “A machine learning approach to doa estimation and model order selection for antenna arrays with subarray sampling, ” IEEE Transactions on Signal Processing, vol. 69, pp. 3075–3087, 2021. [CrossRef] [Google Scholar]
  12. S. Chakrabarty and E. A. Habets, “Broadband doa estimation using convolutional neural networks trained with noise signals, ” in 2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA). IEEE, 2017, pp. 136–140. [Google Scholar]
  13. ——, “Multi-speaker doa estimation using deep convolutional networks trained with noise signals, ” IEEE Journal of Selected Topics in Signal Processing, vol. 13, no. 1, pp. 8–21, 2019. [CrossRef] [Google Scholar]
  14. A. M. Elbir, “Deepmusic: Multiple signal classification via deep learning, ” IEEE Sensors Letters, vol. 4, no. 4, pp. 1–4, 2020. [CrossRef] [PubMed] [Google Scholar]
  15. E. Ozanich, P. Gerstoft, and H. Niu, “A feedforward neural network for direction-of-arrival estimation, ” The journal of the acoustical society of America, vol. 147, no. 3, pp. 2035–2048, 2020. [CrossRef] [PubMed] [Google Scholar]
  16. J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural networks on sequence modeling, ” arXiv preprint arXiv:1412.3555, 2014. [Google Scholar]
  17. Y. Ifergan, E. Vax, Y. Yehuda-zada, B. Sarussi, D. Smadja, S. Dadon, Y. Levin, T. Mazor, Y. Kadmon, Y. Knafo, et al., “Improving the radiation detection level and operational data of pre and post event monitoring systems, ” in International Conference on Nuclear Security: Commitments and Actions. Summary of an International Conference. Companion CD-ROM, 2017. [Google Scholar]
  18. T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The elements of statistical learning: data mining, inference, and prediction. Springer, 2009, vol. 2. [Google Scholar]
  19. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting, ” The journal of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014. [Google Scholar]
  20. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization, ” arXiv preprint arXiv:1412.6980, 2014. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.