Open Access
Issue |
EPJ Web of Conf.
Volume 290, 2023
European Nuclear Physics Conference (EuNPC 2022)
|
|
---|---|---|
Article Number | 07001 | |
Number of page(s) | 6 | |
Section | P7 Fundamental Symmetries and Interactions | |
DOI | https://doi.org/10.1051/epjconf/202329007001 | |
Published online | 08 December 2023 |
- M. Amoretti et al., Production and detection of cold antihydrogen atoms, Nature 419, 456 (2002). [CrossRef] [PubMed] [Google Scholar]
- C. Amsler et al., Pulsed production of antihydrogen, Commun. Phys. 4, 19 (2021). DOI:10.1038/s42005-020-00494-z [CrossRef] [Google Scholar]
- W. Bartmann et al. on behalf of the ELENA and AD teams, The ELENA facility, Phil. Trans. R. Soc. A 376: 20170266 (2018). http://dx.doi.org/10.1098/rsta.2017.0266 [CrossRef] [PubMed] [Google Scholar]
- I. Newton, Philosophiae Naturalis Principia Mathematica, Londini: Jussu Societatis Regae ac Typis Josephi Streater: Prostant Venales apud plures Bibliopolas (1687). [Google Scholar]
- A. Einstein, Die Grundlage der allgemeinen Relativitätstheorie, Annalen der Physik, Vol. 49, p.769 (1916). [CrossRef] [Google Scholar]
- C. M. Will, The Confrontation between General Relativity and Experiment, Living Reviews in Relativity, Vol. 17, 4 (2014). [CrossRef] [PubMed] [Google Scholar]
- P. Touboul et al., MICROSCOPE Mission: Final Results of the Test of the Equivalence Principle, Phys. Rev. Lett. 129, 121102 (2022). [CrossRef] [PubMed] [Google Scholar]
- V. A. Kostelecký and J. D. Tasson, Matter-gravity couplings and Lorentz violation, Phys. Rev. D 83, 016013 (2011). [CrossRef] [Google Scholar]
- M. Doser et al. (AEgIS Collaboration), Exploring the WEP with a pulsed beam of cold anihydrogen. Class. Quantum Grav. Vol. 29, p. 213 184009 (2012). [CrossRef] [Google Scholar]
- S. Aghion et al. (AEgIS Collaboration), A moiré deflectometer for antimatter, Nat. Commun., Vol 5, p.4538, (2014). DOI: http://dx.doi.org/10.1038/ncomms5538 [CrossRef] [Google Scholar]
- B. I. Deutch, A. S. Jensen, A. Miranda and G. C. Oades, Proceedings of The First Workshop on Antimatter Physics at Low Energy, 371, FNAL (1986). [Google Scholar]
- M. Charlton, Antihydrogen production in collisions of antiprotons with excited states of positronium, Physics Letters A, Vol. 143 (3) 143 (1990). [CrossRef] [Google Scholar]
- G. Gabrielse et al., Driven production of cold antihydrogen and the first measured distribution of antihydrogen states. Phys. Rev. Lett. 89, 213401 (2002). DOI:10.1103/PhysRevLett.89.213401 [CrossRef] [PubMed] [Google Scholar]
- G. B. Andresen et al. Trapped antihydrogen, Nature Vol. 468, p. 673 (2010). [CrossRef] [PubMed] [Google Scholar]
- N. Kuroda et al. A source of antihydrogen for in-flight hyperfine spectroscopy, Nat. Commun., Vol. 5, p.3089 (2014). [CrossRef] [Google Scholar]
- C. H. Storry et al., First Laser-Controlled Antihydrogen Production, Phys. Rev. Lett. 93, 263401 (2004). [CrossRef] [PubMed] [Google Scholar]
- M. Antonello et al., Rydberg-positronium velocity and self-ionization studies in a 1T magnetic field and cryogenic environment, Phys. Rev. A 102, 013101 (2020). [CrossRef] [Google Scholar]
- D. Krasnicky, R. Caravita, C. Canali and G.Testera, Cross section for Rydberg antihydrogen production via charge exchange between Rydberg positroniums and antiprotons in a magnetic field, Phys. Rev. A 94, 022714(14) (2016). [CrossRef] [Google Scholar]
- D. Krasnicky, G. Testera and N. Zurlo, Comparison of classical and quantum models of anti-hydrogen formation through charge exchange, J. Phys. B: At. Mol. Opt. Phys. 52, 115202 (2019). [CrossRef] [Google Scholar]
- F. G. Major, V. N. Gheorghe and G. Werth, Charged Particle Traps Springer Series on Atomic, Optical, and Plasma Physics, Springer-Verlag Berlin Heidelberg (2005). [Google Scholar]
- D. H. E. Dubin and T. M. O’Neil, Trapped nonneutral plasmas, liquids, and crystals (the thermal equilibrium states). Rev. Mod. Phys. 71, 87-172 (1999). [CrossRef] [Google Scholar]
- S. Aghion et al., (AEgIS Collaboration), Compression of a mixed antiproton and electron non-neutral plasma to high densities. Eur. Phys. J. D 72, 76-86 (2018). [CrossRef] [Google Scholar]
- G. B. Andresen et al., (ALPHA Collaboration), Compression of antiproton clouds for antihydrogen trapping. Phys. Rev. Lett. 100, 203401 (2008). [CrossRef] [PubMed] [Google Scholar]
- N. Kuroda et al., Radial compression of an antiproton cloud for production of intense antiproton beams. Phys. Rev. Lett. 100, 203402 (2008). [CrossRef] [PubMed] [Google Scholar]
- S. Mariazzi, P. Bettotti and R. S. Brusa, Positronium Cooling and Emission in Vacuum from Nanochannels at Cryogenic Temperature, Phys. Rev. Lett. Vol. 104 p. 243401 (2010). [CrossRef] [PubMed] [Google Scholar]
- Y. Nagashima et al., Origin of positronium emitted from SiO2, Phys. Rev. B 58, 12676-12679 (1998). [CrossRef] [Google Scholar]
- S. Aghion et al. (AEgIS Collaboration), Laser excitation of the n = 3 level of positronium for antihydrogen production, Phys. Rev. A 94, 012507 (2016). [Google Scholar]
- M. Antonello et al. (AEgIS Collaboration), Rydbergpositronium velocity and self-ionization studies in 1T magnetic field and cryogenic environment, Phys. Rev. A 102, 013101 (2020). [CrossRef] [Google Scholar]
- N. Zurlo et al. (AEgIS Collaboration), Calibration and equalisation of plastic scintillator detectors for antiproton annihilation identification over positron/positronium background, Acta Physica Polonica B, Vol. 51, No 1, p. 213 (2020). [CrossRef] [Google Scholar]
- D. Pagano, G. Bonomi, A. Donzella, A. Zenoni, G. Zumerle and N. Zurlo, EcoMug: An Efficient COsmic MUon Generator for cosmic-ray muon applications, Nucl. Instrum. Meth. Phys. Res. A 1014, 165732 (2021). DOI: https://doi.org/10.1016/j.nima.2021.165732 [CrossRef] [Google Scholar]
- G. Bonomi, A. Donzella, D. Pagano, A. Zenoni, G. Zumerle and N. Zurlo, A Monte Carlo Muon Generator for Cosmic-Ray Muon Applications Journal of Advanced Instrumentation in Science, Vol. 2022 (2022). DOI: https://doi.org/10.31526/jais.2022.290. [CrossRef] [Google Scholar]
- N. Zurlo, G. Bonomi, A. Donzella, D. Pagano, A. Zenoni and G. Zumerle, A new Monte Carlo muon generator for cosmic-ray muon applications, Proceedings of Computational Tools for High Energy Physics and Cosmology — PoS(CompTools2021), Vol.409, p.019 (2022). DOI: https://doi.org/10.22323/1.409.0019 [CrossRef] [Google Scholar]
- S. Mariazzi et al. (AEgIS Collaboration), High-yield thermalized positronium at room temperature emitted by morphologically tuned nanochanneled silicon targets J. Phys. B: At. Mol. Opt. Phys. 54 085004 (2021). [CrossRef] [Google Scholar]
- C. Amsler et al. (AEgIS Collaboration), A 100 μmresolution position-sensitive detector for slow positronium Nucl. Instrum. Meth. Phys. Res. B 457, 44-48 (2019). [CrossRef] [Google Scholar]
- L. Glöggler et al. (AEgIS Collaboration), High-resolution MCP-TimePix3 imaging/timing detector for antimatter physics Meas. Sci. Technol. 33 115105 (2022). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.