Open Access
Issue |
EPJ Web of Conf.
Volume 290, 2023
European Nuclear Physics Conference (EuNPC 2022)
|
|
---|---|---|
Article Number | 10002 | |
Number of page(s) | 6 | |
Section | Plenary Talk | |
DOI | https://doi.org/10.1051/epjconf/202329010002 | |
Published online | 08 December 2023 |
- Aartsen et al. (IceCube Coll.), Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector, Science 342, 1242856 (2013) [CrossRef] [PubMed] [Google Scholar]
- Aartsen et al. (IceCube Coll.), Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A, Science 361, eaat1378 (2018) [NASA ADS] [CrossRef] [Google Scholar]
- Aartsen et al. (IceCube Coll.), Measurement of the multi-TeV neutrino interaction cross-section with IceCube using Earth absorption, Nature 551, 596 (2017) [CrossRef] [PubMed] [Google Scholar]
- Abbasi et al. (IceCube Coll.), Evidence for neutrino emission from the nearby active galaxy NGC 1068, Science 378, 538 (2022) doi:10.1126/science.abg3395 [CrossRef] [PubMed] [Google Scholar]
- Abreu, P., et al. (Auger Coll.), Measurement of the Proton-Air Cross Section at s=57TeV with the Pierre Auger Observatory, Physical Review Letters 109, 062002 (2012) [CrossRef] [PubMed] [Google Scholar]
- Ahlers & Halzen, High-energy cosmic neutrino puzzle: a review, Reports on Progress in Physics 78, 126901 (2015) [CrossRef] [PubMed] [Google Scholar]
- Albrecht, Cazon, Dembinski, Fedynitch, Kampert, Pierog, Rhode, Soldin, Spaan, Ulrich, & Unger, The Muon Puzzle in cosmic-ray induced air showers and its connection to the Large Hadron Collider, Astrophysics and Space Science 367, 27 (2022) [CrossRef] [Google Scholar]
- Alves Batista et al., CRPropa 3.2 - an advanced frame-work for high-energy particle propagation in extra-galactic and galactic spaces, Journal of Cosmology and Astroparticle Physics 2022, 035 (2022) [Google Scholar]
- Becker, High-energy neutrinos in the context of multimessenger astrophysics, Physics Reports 458, 173 (2008) [CrossRef] [Google Scholar]
- Becker Tjus, Eichmann, Halzen, Kheirandish, & Saba, High-energy neutrinos from radio galaxies, Physical Review D 89, 123005 (2014) [Google Scholar]
- Becker Tjus & Merten, Closing in on the origin of Galactic cosmic rays using multimessenger information, Physics Reports 872, 1 (2020) [CrossRef] [Google Scholar]
- Bhattacharya, Enberg, Reno, & Sarcevic, Charm decay in slow-jet supernovae as the origin of the IceCube ultra-high energy neutrino events, Journal of Cosmology and Astroparticle Physics 2015, 034 (2015) [Google Scholar]
- Britzen et al., A cosmic collider: Was the IceCube neutrino generated in a precessing jet-jet interaction in TXS 0506+056?, Astronomy and Astrophysics 630, A103 (2019) [CrossRef] [EDP Sciences] [Google Scholar]
- Chadwick, 35 Years of Ground-Based Gamma-ray Astronomy, Universe 7, 432 (2021) [CrossRef] [Google Scholar]
- Eichmann, Oikonomou, Salvatore, Dettmar and Becker Tjus, Solving the Multimessenger Puzzle of the AGN-starburst Composite Galaxy NGC 1068, The Astrophysical Journal 939, 43 (2022) [CrossRef] [Google Scholar]
- Evoli, Gaggero, Vittino, Di Mauro, Grasso, & Mazziotta, Cosmic-ray propagation with DRAGON2: II. Nuclear interactions with the interstellar gas, Journal of Cosmology and Astroparticle Physics 2018, 006 (2018) [CrossRef] [Google Scholar]
- Falstad et al., CON-quest. Searching for the most obscured galaxy nuclei, Astronomy and Astrophysics 649, A105 (2021) [Google Scholar]
- Fedynitch, Cascade equations and hadronic interactions at high energies, Ph.D. Thesis (2015) [Google Scholar]
- Enberg, Reno, & Sarcevic, High energy neutrinos from charm in astrophysical sources, Physical Review D 79, 053006 (2009) [CrossRef] [Google Scholar]
- Hillas, The Origin of Ultra-High-Energy Cosmic Rays, Annual Review of Astronomy and Astrophysics 22, 425 (1984) [CrossRef] [Google Scholar]
- Kun, Bartos, Becker Tjus, Biermann, Halzen and Mezo˝, Cosmic Neutrinos from Temporarily Gamma-suppressed Blazars, The Astrophysical Journal 911, L18 (2021) doi:10.3847/2041-8213/abf1ec [CrossRef] [Google Scholar]
- Merten, Becker Tjus, Fichtner, Eichmann, & Sigl, CRPropa 3.1—a low energy extension based on stochastic differential equations, Journal of Cosmology and Astroparticle Physics 2017, 046 (2017) [Google Scholar]
- Murase, Kimura, & Mészáros, Hidden Cores of Active Galactic Nuclei as the Origin of Medium-Energy Neutrinos: Critical Tests with the MeV Gamma-Ray Connection, Physical Review Letters 125, 011101 (2020) [CrossRef] [PubMed] [Google Scholar]
- Orlando, Johannesson, Moskalenko, Porter, & Strong, GALPROP cosmic-ray propagation code: recent results and updates, Nuclear and Particle Physics Proceedings 297-299, 129 (2018) doi:10.1016/j.nuclphysbps.2018.07.020 [Google Scholar]
- Peretti, Lamastra, Saturni, Ahlers, Blasi, Morlino, & Cristofari, Diffusive shock acceleration at EeV and associated multimessenger flux from ultra-fast outflows driven by Active Galactic Nuclei, arXiv e-prints arXiv:2301.13689 (2023) [Google Scholar]
- Strong & Moskalenko, The GALPROP program for cosmic-ray propagation: new developments, 26th International Cosmic Ray Conference (ICRC26), Volume 4 4, 255 (1999) [Google Scholar]
- Sironi & Beloborodov, Kinetic Simulations of Radiative Magnetic Reconnection in the Coronae of Accreting Black Holes, The Astrophysical Journal 899, 52 (2020) [CrossRef] [Google Scholar]
- Zyla et al. (Particle Data Group), Review of Particle Physics, Progress of Theoretical and Experimental Physics 2020, 083C01 (2020) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.