Open Access
Issue |
EPJ Web of Conf.
Volume 294, 2024
WONDER-2023 - 6th International Workshop On Nuclear Data Evaluation for Reactor applications
|
|
---|---|---|
Article Number | 03002 | |
Number of page(s) | 7 | |
Section | Theory | |
DOI | https://doi.org/10.1051/epjconf/202429403002 | |
Published online | 17 April 2024 |
- C.E. Rasmussen, C.K.I. Williams, Gaussian processes for machine learning. (2006) [Google Scholar]
- A.C. Wahl, Atomic Data and Nuclear Data Tables 39, 1 (1988) [Google Scholar]
- V. Piau et al., Physics Letters B 837, 137648 (2023) [CrossRef] [Google Scholar]
- Vorobyev et al., AIP Conference Proceedings 798, 255 (2005) [Google Scholar]
- R. Le Riche, N. Durrande (2019), lecture, https://hal.science/cel-02285439 [Google Scholar]
- R. Le Riche (2014), lecture, https://hal.science/cel-01081304 [Google Scholar]
- A. McHutchon, C.E. Rasmussen, Gaussian Process training with input noise (2011) [Google Scholar]
- K.V. Mardia, R.J. Marshall, Biometrika 71, 135 (1984) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.