Open Access
Issue
EPJ Web of Conf.
Volume 294, 2024
WONDER-2023 - 6th International Workshop On Nuclear Data Evaluation for Reactor applications
Article Number 05004
Number of page(s) 7
Section Uncertainties and Covariance Matrices
DOI https://doi.org/10.1051/epjconf/202429405004
Published online 17 April 2024
  1. L. Fiorito, G. Žerovnik, A. Stankovskiy, G. Van den Eynde, P.E. Labeau, Nuclear data uncertainty propagation to integral responses using SANDY (2017), http://www.sciencedirect.com/science/article/pii/S0306454916305278 [Google Scholar]
  2. P.K. Romano, N.E. Horelik, B.R. Herman, A.G. Nelson, B. Forget, K. Smith, OpenMC: A state-of-the-art Monte Carlo code for research and development (2015), https://www.sciencedirect.com/science/article/pii/S030645491400379X [Google Scholar]
  3. D. Rochman, W. Zwermann, S.C.v.d. Marck, A.J. Koning, H. Sjostrand, P. Helgesson, B. Krzykacz-Hausmann, Efficient Use of Monte Carlo: Uncertainty Propagation (2014), https://doi.org/10.13182/NSE13-32 [Google Scholar]
  4. Transatomic Power - Transatomic Reactor Documentation (2018), accessed 2023-04-18, https://github.com/transatomic/reactor [Google Scholar]
  5. S. Stjärnholm, model_tools.py at main ・ kladdy/master-project (2023), accessed July 5 2023, https://github.com/Kladdy/master-project/blob/main/logistics/tools/model_tools.py [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.