Open Access
Issue |
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
|
|
---|---|---|
Article Number | 03021 | |
Number of page(s) | 8 | |
Section | Offline Computing | |
DOI | https://doi.org/10.1051/epjconf/202429503021 | |
Published online | 06 May 2024 |
- K. Czarnecki, U. Eisenecker, R. Glück, D. Vandevoorde, T. Veldhuizen, Generative Programming and Active Libraries, in Generic Programming, edited by M. Jazayeri, R.G.K. Loos, D.R. Musser (Springer, Berlin, Heidelberg, 2000), Lecture Notes in Computer Science, pp. 25–39, ISBN 978-3-540-39953-7 [CrossRef] [Google Scholar]
- I. Masliah, M. Baboulin, J. Falcou, Meta-Programming and Multi-stage Programming for GPGPUs, in 10th IEEE International Symposium on Embedded Multicore/Manycore Systems-on-Chip (MCSOC 2016) (2016), p. 369 [Google Scholar]
- J. Falcou, Kiwaku github repository, https://github.com/jfalcou/kiwaku [Google Scholar]
- S.J. Pennycook, J.D. Sewall, V.W. Lee, A metric for performance portability (2016), 1611.07409 [Google Scholar]
- X. Ai, C. Allaire, N. Calace, A. Czirkos, M. Elsing, I. Ene, R. Farkas, L.G. Gagnon, R. Garg, P. Gessinger et al., A Common Tracking Software Project, in Computing and Software for Big Science (2022), Vol. 6, p. 8 [CrossRef] [Google Scholar]
- S.N. Swatman, A.L. Varbanescu, A. Pimentel, A. Salzburger, A. Krasznahorkay, Systematically Exploring High-Performance Representations of Vector Fields through Compile-Time Composition, in Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering (Association for Computing Machinery, New York, NY, USA, 2023), ICPE ’23, pp. 55–66, ISBN 9798400700682 [Google Scholar]
- R. Poya, A.J. Gil, R. Ortigosa, A High Performance Data Parallel Tensor Contraction Framework: Application to Coupled Electro-Mechanics, in Computer Physics Communications (2017), Vol. 216, pp. 35–52 [CrossRef] [Google Scholar]
- D.S. Hollman, B. Adelstein-Lelbach, H.C. Edwards, M. Hoemmen, D. Sunderland, C.R. Trott, Mdspan in C++: A Case Study in the Integration of Performance Portable Features into International Language Standards, in CoRR (2020), Vol. abs/2010.06474, 2010.06474 [Google Scholar]
- J.G. Siek, A. Lumsdaine, in Computing in Object-Oriented Parallel Environments, edited by D. Caromel, R.R. Oldehoeft, M. Tholburn (Springer Berlin Heidelberg, Berlin, Heidelberg, 1998), Vol. 1505, pp. 59–70, ISBN 978-3-540-65387-5 978-3-540-49372-3 [Google Scholar]
- Accelerate Fast Math with Intel oneAPI Math Kernel Library [Google Scholar]
- Eigen (libeigen) C++ linear algebra library, https://eigen.tuxfamily.org [Google Scholar]
- P. Estérie, J. Falcou, M. Gaunard, J.T. Lapresté, L. Lacassagne, Journal of Parallel and Distributed Computing 74 (2014) [PubMed] [Google Scholar]
- GSL GNU Scientific Library GNU Project Free Software Foundation, https://www.gnu.org/software/gsl/ [Google Scholar]
- C. Sanderson, R. Curtin, Armadillo: A Template-Based C++ Library for Linear Algebra, in Journal of Open Source Software (The Open Journal, 2016), Vol. 1, p. 26 [CrossRef] [Google Scholar]
- Z. Xianyi, OpenBLAS: An optimized BLAS library, https://github.com/xianyi/OpenBLAS [Google Scholar]
- LAPACK Users’ Guide – Third Edition, https://www.netlib.org/lapack/lug/ [Google Scholar]
- R.B. Lehoucq, D.C. Sorensen, C. Yang, ARPACK Users’ Guide: Solution of Large-scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods (SIAM, 1998), ISBN 978-0-89871-407-4 [Google Scholar]
- X.S. Li, P. Lin, Y. Liu, P. Sao, Newly Released Capabilities in the Distributed-Memory SuperLU Sparse Direct Solver, in ACM Transactions on Mathematical Software (2023), Vol. 49, pp. 1–20 [Google Scholar]
- Kokkos Ecosystem – Part of the Exascale Project, https://kokkos.org/ [Google Scholar]
- Dlib C++ Library, http://dlib.net/ [Google Scholar]
- SYCL C++ Single-source Heterogeneous Programming for Acceleration Offload” The Khronos Group, Jan. 20, 2014., https://www.khronos.org/sycl/ [Google Scholar]
- Open MPI: Open Source High Performance Computing, https://www.open-mpi.org/ [Google Scholar]
- J. Falcou, J. Serot, E.V.E., An Object Oriented SIMD Library, in Scalable Computing: Practice and Experience (2005), Vol. 6 [Google Scholar]
- P. Estérie, J. Falcou, M. Gaunard, J.T. Lapresté, Boost.SIMD: Generic Programming for Portable SIMDization, in Proceedings of the 2014 Workshop on Programming Models for SIMD/Vector Processing (Association for Computing Machinery, New York, NY, USA, 2014), WPMVP ’14, pp. 1–8, ISBN 978-1-4503-2653-7 [Google Scholar]
- S. Joube, Reference code used in this article, with full instructions for reproducible results, https://github.com/SylvainJoube/CHEP2023-kiwaku [Google Scholar]
- ATLAS Experiment at CERN, https://atlas.cern/ [Google Scholar]
- The OpenMP API specification for parallel programming, https://www.openmp.org/ [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.