Open Access
Issue
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
Article Number 04026
Number of page(s) 8
Section Distributed Computing
DOI https://doi.org/10.1051/epjconf/202429504026
Published online 06 May 2024
  1. Z. Ivezic et al., LSST: From Science Drivers To Reference Design And Anticipated Data Products, , Astrophys. J., 873, 111 (2019) [CrossRef] [Google Scholar]
  2. T. Maeno et al., PanDA: Production and Distributed Analysis System, Computing and Software for Big Science (to appear) [Google Scholar]
  3. S. Padolski, S. Ye, E. Karavakis, Running Science Pipelines using PanDA (2022), Vera C. Rubin Observatory Data Management Technical Note DMTN-168, https://dmtn-168.lsst.io [Google Scholar]
  4. S.M. Kahn et al., Design and development of the 3.2 gigapixel camera for the Large Synoptic Survey Telescope, in Ground-based and Airborne Instrumentation for Astronomy III, edited by I.S. McLean, S.K. Ramsay, H. Takami (2010), Vol. 7735 of Proc.SPIE, p. 77350J [Google Scholar]
  5. T. Jenness et al., The Vera C. Rubin Observatory Data Butler and pipeline execution system, in Software and Cyberinfrastructure for Astronomy VII (2022), Vol. 12189 of Proc. SPIE, p. 1218911, arXiv:2206.14941 [Google Scholar]
  6. M. Gower et al., Adding Workflow Management Flexibility to LSST Pipelines Execution, in Astronomical Data Analysis Software and Systems XXXII (2023), Vol. in press of ASP Conf. Ser., arXiv:2211.15795 [Google Scholar]
  7. F. Hernandez et al., Overview of the distributed image processing infrastructure to produce the Legacy Survey of Space and Time (LSST), Proc. of CHEP 2023 (to appear) [Google Scholar]
  8. SLAC Shared Scientific Data Facility, https://sdf.slac.stanford.edu/ [Google Scholar]
  9. W. O’Mullane et al., Data Preivew 0.2 and Operations Rehearsal for DRP (2023), Vera C. Rubin Observatory Technical Note RTN-041, https://rtn-041.lsst.io [Google Scholar]
  10. T. Maeno et al., Utilizing Distributed Heterogeneous Computing with PanDA in ATLAS, Proc. of CHEP 2023 (to appear) [Google Scholar]
  11. ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, J. Inst. 3, S08003 (2008) [Google Scholar]
  12. Kubernetes: Production-grade container orchestration, https://kubernetes.io/ [Google Scholar]
  13. J. Bosch et al., An Overview of the LSST Image Processing Pipelines, in Astronomical Data Analysis Software and Systems XXVII, edited by P.J. Teuben, M.W. Pound, B.A. Thomas, E.M. Warner (2019), Vol. 523 of ASP Conf. Ser., p. 521, arXiv:1812.03248 [Google Scholar]
  14. W. Guan et al., Distributed Machine Learning with PanDA and iDDS in LHC ATLAS, Proc. of CHEP 2023 (to appear) [Google Scholar]
  15. M. Barisits et al., ATLAS Data Carousel, in EPJ Web of Conferences (EDP Sciences, 2020), Vol. 245, p. 04035 [CrossRef] [EDP Sciences] [Google Scholar]
  16. C. Weber et al., An Active Learning application in a dark matter search with ATLAS PanDA and iDDS, Proc. of CHEP 2023 (to appear) [Google Scholar]
  17. K.T. Lim, Multi-Site Data Release Processing Using PanDA and Rucio (2022), Vera C. Rubin Observatory Data Management Technical Note 212, https://dmtn-213. lsst.io [Google Scholar]
  18. M. Barisits et al., Rucio: Scientific Data Management, Comput Softw Big Sci 3, 11 (2019) [CrossRef] [Google Scholar]
  19. CloudNativePG ­ PostgreSQL Operator for Kubernetes, https://cloudnative-pg. io/ [Google Scholar]
  20. T. Korchuganova et al., BigPanDA monitoring system evolution in the ATLAS experiment, Proc. of CHEP 2023 (to appear) [Google Scholar]
  21. Process monitor (prmon) github repository, https://github.com/HSF/prmon/ [Google Scholar]
  22. Google cloud logging, https://cloud.google.com/logging [Google Scholar]
  23. B. Yanny et al., Compute Resource Usage of DP0.2 production run (2023), Vera C. Rubin Observatory Technical Note 39, https://rtn-039.lsst.io [Google Scholar]
  24. W. O’Mullane et al., Near term worfklow for pre-operations with PanDA (2022), Vera C. Rubin Observatory Technical Note RTN-013, https://rtn-013.lsst.io [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.