Open Access
Issue |
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
|
|
---|---|---|
Article Number | 07007 | |
Number of page(s) | 7 | |
Section | Facilities and Virtualization | |
DOI | https://doi.org/10.1051/epjconf/202429507007 | |
Published online | 06 May 2024 |
- Lyndon Evans and Philip Bryant, LHC Machine, JINST 3 S08001(2008). [CrossRef] [Google Scholar]
- The CMS Collaboration, et. al., The CMS experiment at the CERN LHC, JINST 3 S08004(2008). [Google Scholar]
- A. Dorigo, P. Elmer, F. Furano, and A. Hanushevsky, Xrootd - A highly scalable architecture for data access, WSEAS Transactions on Computers (2005). [Google Scholar]
- M. Barisits, et.al., Rucio: Scientifc Data Management, Computing and Software for Big Science (2019) 3:11. [Google Scholar]
- D. Weitzel, et. al., XRootD Monitoring Collector, https://zenodo.org/record/4670589 [Google Scholar]
- B. Garrido, A. Forti, D. Weitzel, J. Andreeva, and S. McKee, New XRootD Monitoring implementation, To Be Submitted to the CHEP2023 Proceedings. [Google Scholar]
- D. Weitzel, et. al., XRootD Monitoring Shoveler, https://zenodo.org/record/8269867 [Google Scholar]
- R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy, P. Avery, K. Blackburn, T. Wenaus, F. Würthwein, I. Foster, R. Gardner, M. Wilde, A. Blatecky, J. McGee, and R. Quick, The open science grid, J. Phys. Conf. Ser., 78, 012057(2007). https://doi.org/10.1088/1742-6596/78/1/012057 [NASA ADS] [CrossRef] [Google Scholar]
- F. Pedregosa, et. al., Scikit-learn: Machine Learning in Python, JMLR 12, pp. 2825-2830(2011). [Google Scholar]
- F. Chollet, et. al., Keras, Available at https://github.com/fchollet/keras(2015) and Timeseries Anomaly Detection Example, Available at https://keras.io/examples/timeseries/timeseries_anomaly_detection/ [Google Scholar]
- E. Torres, Applying Deep Learning Algorithms to Alarm/Anomaly Detection for Grid Jobs, FNAL SIST Program (2017) [Google Scholar]
- V. Sharma, Keras predicting random file transfer durations, https://github.com/vyomshm/Keras-predicting-random-file-transfer-durations (2017) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.