Open Access
Issue
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
Article Number 09020
Number of page(s) 9
Section Artificial Intelligence and Machine Learning
DOI https://doi.org/10.1051/epjconf/202429509020
Published online 06 May 2024
  1. S. Chatrchyan et al. (CMS), JINST 3, S08004 (2008), also published by CERN Geneva in 2010 [Google Scholar]
  2. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand et al., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506, 250 (2003) [NASA ADS] [CrossRef] [Google Scholar]
  3. G. Petrucciani, A. Rizzi, C. Vuosalo, on behalf of the CMS Collaboration, Journal of Physics: Conference Series 664, 072052 (2015) [CrossRef] [Google Scholar]
  4. A. Rizzi, G. Petrucciani, M. Peruzzi (CMS), EPJ Web Conf. 214, 06021 (2019) [Google Scholar]
  5. F. Vaselli, A. Rizzi, Flashsim: A deep learning solution to the hep simulation problem (2022), https://etd.adm.unipi.it/t/etd-08062022-170936 [Google Scholar]
  6. A. Xu, S. Han, X. Ju, H. Wang, Generative machine learning for detector response modeling with a conditional normalizing flow (2023), 2303.10148 [Google Scholar]
  7. F. Vaselli, A. Rizzi, F. Cattafesta, G. Cicconofri (CMS), Tech. rep., CERN, Geneva (2023), https://cds.cern.ch/record/2858890 [Google Scholar]
  8. G. Papamakarios, E. Nalisnick, D.J. Rezende, S. Mohamed, B. Lakshminarayanan, Normalizing flows for probabilistic modeling and inference (2021), 1912.02762 [Google Scholar]
  9. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., Pytorch: An imperative style, high-performance deep learning library (2019), 1912.01703 [Google Scholar]
  10. C. Durkan, A. Bekasov, I. Murray, G. Papamakarios, nflows: normalizing flows in Py-Torch (2020), https://doi.org/10.5281/zenodo.4296287 [Google Scholar]
  11. A. Sirunyan et al. (CMS), Evidence for Higgs boson decay to a pair of muons (2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.