Open Access
Issue
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
Article Number 09023
Number of page(s) 8
Section Artificial Intelligence and Machine Learning
DOI https://doi.org/10.1051/epjconf/202429509023
Published online 06 May 2024
  1. ATLAS Collaboration, Tech. rep., CERN, Geneva (2022), http://cds.cern.ch/ record/2802918 [Google Scholar]
  2. CMS Offline Software, Computing, Tech. rep., CERN, Geneva (2022), http://cds. cern.ch/record/2815292 [Google Scholar]
  3. LHCb Collaboration, Tech. rep., CERN, Geneva (2018), http://cds.cern.ch/ record/2319756 [Google Scholar]
  4. A.M.M. Scaife, Phil. Trans. R. Soc. A. 378 (2020) [Google Scholar]
  5. M. Khan, X. Wu, X. Xu, W. Dou, Big data challenges and opportunities in the hype of Industry 4.0, in 2017 IEEE International Conference on Communications (ICC) (2017), pp. 1–6 [Google Scholar]
  6. O. Shadura, B.P. Bockelman, P. Canal, D. Piparo, Z. Zhang, EPJ Web of Conferences 245, 02017 (2020) [CrossRef] [EDP Sciences] [Google Scholar]
  7. C. Patauner, Lossy and lossless data compression of data from high energy physics experiments (2011), presented 2011, https://cds.cern.ch/record/1433839 [Google Scholar]
  8. A. Rawal, Exploiting Domain-specific Data Properties to Improve Compression for High Energy Physics Data (2020), presented 2020, https://newtraell.cs. uchicago.edu/research/publications/techreports/TR-2020-03 [Google Scholar]
  9. K. Sayood, Introduction to data compression (Morgan Kaufmann, 2017) [Google Scholar]
  10. K. Brandenburg, MP3 and AAC explained, in 17th International Conference: High-Quality Audio Coding (Audio Engineering Society, 1999) [Google Scholar]
  11. M.A. Kramer, AIChE Journal 37, 233 (1991), https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.690370209 [CrossRef] [Google Scholar]
  12. Izaak Neutelings, Neural networks (2021), [Online; accessed 02-May-2023; Last edited 11 September 2022], https://tikz.net/neural_networks/ [Google Scholar]
  13. T. Liu, J. Wang, Q. Liu, S. Alibhai, T. Lu, X. He, IEEE Transactions on Big Data 9, 22 (2023) [CrossRef] [Google Scholar]
  14. J. Liu, S. Di, K. Zhao, S. Jin, D. Tao, X. Liang, Z. Chen, F. Cappello, Exploring Autoencoder-based Error-bounded Compression for Scientific Data, in 2021 IEEE International Conference on Cluster Computing (CLUSTER) (2021), pp. 294–306 [Google Scholar]
  15. N. Wang, T. Liu, J. Wang, Q. Liu, S. Alibhai, X. He, Journal of Network and Computer Applications 205, 103452 (2022) [CrossRef] [Google Scholar]
  16. R. La Grassa, C. Re, G. Cremonese, I. Gallo, Remote Sensing 14, 2472 (2022) [CrossRef] [Google Scholar]
  17. Y. Huang, Y. Ren, S. Yoo, J. Huang, Efficient Data Compression for 3D Sparse TPC via Bicephalous Convolutional Autoencoder, in 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA) (2021), pp. 1094–1099 [Google Scholar]
  18. J. Lee, Q. Gong, J. Choi, T. Banerjee, S. Klasky, S. Ranka, A. Rangarajan, Applied Sciences 12, 6718 (2022) [CrossRef] [Google Scholar]
  19. S. Sriram, A.K. Dwivedi, P. Chitra, V.V. Sankar, S. Abirami, S.R. Durai, D. Pandey, M.K. Khare, Arabian Journal for Science and Engineering 47, 10395 (2022) [CrossRef] [Google Scholar]
  20. E. Wulff, Deep autoencoders for compression in high energy physics (2020), student Paper, http://lup.lub.lu.se/student-papers/record/9004751 [Google Scholar]
  21. E. Wallin, Tests of autoencoder compression of trigger jets in the atlas experiment (2020), student Paper, http://lup.lub.lu.se/student-papers/record/ 9012882 [Google Scholar]
  22. J.H. Collins, Y. Huang, S. Knapen, B. Nachman, D. Whiteson (2022), 2210.11489 [Google Scholar]
  23. C. Weisser, M. Williams, “autoencoders for lhcb”, presented at the reconstruction, trigger, and machine learning for the hl-lhc” mit workshop (2018), student Presentation, https://indico.cern.ch/event/714134/contributions/2964667/ attachments/1641424/2621410/Autoencoder_MIT_Weisser.pdf [Google Scholar]
  24. Baler Collaboration, Baler, https://github.com/baler-collaboration/baler (2023) [Google Scholar]
  25. D. George, Deep Autoencoders for ATLAS Data Compression - George Dialektakis - Google Summer of Code 2021 Project (2021), https://doi.org/10.5281/zenodo. 5482611 [Google Scholar]
  26. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., Pytorch: An imperative style, high-performance deep learning library (2019), https://arxiv.org/abs/1912.01703 [Google Scholar]
  27. D.P. Kingma, J. Ba, Adam: A method for stochastic optimization (2014), https://arxiv.org/abs/1412.6980 [Google Scholar]
  28. C.R. Harris, K.J. Millman, S.J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N.J. Smith et al., Nature 585, 357 (2020) [NASA ADS] [CrossRef] [Google Scholar]
  29. G.P. Salam, CERN Yellow Rep. School Proc. 5, 1 (2020) [Google Scholar]
  30. CMS collaboration, Tech. rep. (2017), http://opendata.cern.ch/record/6010 [Google Scholar]
  31. CMS Collaboration, “cms physics objects 2015” (2015), online, http://opendata. cern.ch/docs/cms-physics-objects-2015 [Google Scholar]
  32. S. Aastrand, Autoencoder compression in high energy physics (2022), student Paper, http://lup.lub.lu.se/student-papers/record/9004751 [Google Scholar]
  33. F. Bengtsson, C. Doglioni, P.A. Ekman, A. Gallén, P. Jawahar, A. Orucevic-Alagic, M.C. Santasmasas, N. Skidmore, O. Woolland, Baler – machine learning based compression of scientific data (2023), 2305.02283 [Google Scholar]
  34. Gallén, Axel, An Open-Source Autoencoder Compression Tool for High Energy Physics (2023), Student Paper [Google Scholar]
  35. Y. LeCun, Y. Bengio et al., The handbook of brain theory and neural networks 3361, 1995 (1995) [Google Scholar]
  36. T. Liu, J. Wang, Q. Liu, S. Alibhai, T. Lu, X. He, IEEE Transactions on Big Data 9, 22 (2023) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.