Open Access
Issue
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
Article Number 09027
Number of page(s) 8
Section Artificial Intelligence and Machine Learning
DOI https://doi.org/10.1051/epjconf/202429509027
Published online 06 May 2024
  1. M. Ablikim et al. (BESIII), Nucl. Instrum. Meth. A 614, 345 (2010), 0911.4960 [Google Scholar]
  2. C.A. Zhang, Performance of the BEPC and progress of the BEPCII, in 32nd International Conference on High Energy Physics (2004), pp. 993–997 [Google Scholar]
  3. D.M. Asner et al., Int. J. Mod. Phys. A 24, S1 (2009), 0809.1869 [Google Scholar]
  4. M. Ablikim, M.N. Achasov, P. Adlarson, S. Ahmed, M. Albrecht, M. Alekseev, A. Amoroso, F.F. An, Q. An, Y. Bai et al., Chinese Physics C 44, 040001 (2020) [NASA ADS] [CrossRef] [Google Scholar]
  5. D. Bourilkov, Int. J. Mod. Phys. A 34, 1930019 (2020), 1912.08245 [Google Scholar]
  6. A.N. Charan, J. Phys. Conf. Ser. 2438, 012111 (2023), 2301.11654 [CrossRef] [Google Scholar]
  7. V. Khachatryan et al. (CMS), JINST 10, P06005 (2015), 1502.02701 [CrossRef] [Google Scholar]
  8. L.A. Badulescu, Proceedings of Annals of University of Craiova (2007) [Google Scholar]
  9. A.J. Myles, R.N. Feudale, Y. Liu, N.A. Woody, S.D. Brown, Journal of Chemometrics: A Journal of the Chemometrics Society 18, 275 (2004) [CrossRef] [Google Scholar]
  10. J.S. Kushwah, A. Kumar, S. Patel, R. Soni, A. Gawande, S. Gupta, Materials Today: Proceedings 56, 3571 (2022) [CrossRef] [Google Scholar]
  11. T.H. Lee, A. Ullah, R. Wang, Macroeconomic forecasting in the era of big data: Theory and practice pp. 389–429 (2020) [Google Scholar]
  12. I.D. Mienye, Y. Sun, Z. Wang, Procedia Manufacturing 35, 698 (2019) [CrossRef] [Google Scholar]
  13. L. Breiman, Classification and regression trees (Routledge, 2017) [CrossRef] [Google Scholar]
  14. R.E. Schapire et al., A brief introduction to boosting, in Ijcai (Citeseer, 1999), Vol. 99, pp. 1401–1406 [Google Scholar]
  15. T. Chen, C. Guestrin, Xgboost: Reliable large-scale tree boosting system, in Proceedings of the 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA (2015), pp. 13–17 [Google Scholar]
  16. S.S. Dhaliwal, A.A. Nahid, R. Abbas, Information 9, 149 (2018) [CrossRef] [Google Scholar]
  17. W. Chang, Y. Liu, Y. Xiao, X. Yuan, X. Xu, S. Zhang, S. Zhou, Diagnostics 9, 178 (2019) [CrossRef] [PubMed] [Google Scholar]
  18. T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (2016), pp. 785–794 [Google Scholar]
  19. W. Li, H. Liu, Z. Deng, K. He, M. He, X. Ji, L. Jiang, H. Li, C. Liu, Q. Ma et al., THE OFFLINE SOFTWARE FOR THE BESIII EXPERIMENT (2006), https://api. semanticscholar.org/CorpusID:221378819 [Google Scholar]
  20. Y. Shuai, Y. Zheng, H. Huang, Hybrid software obsolescence evaluation model based on PCA-SVM-GridSearchCV, in 2018 IEEE 9th international conference on software engineering and service science (ICSESS) (IEEE, 2018), pp. 449–453 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.