Open Access
Issue |
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
|
|
---|---|---|
Article Number | 11010 | |
Number of page(s) | 8 | |
Section | Heterogeneous Computing and Accelerators | |
DOI | https://doi.org/10.1051/epjconf/202429511010 | |
Published online | 06 May 2024 |
- A. Valassi, E. Yazgan, J. McFayden, S. Amoroso, J. Bendavid, A. Buckley, M. Cacciari, T. Childers, V. Ciulli, R. Frederix et al., Computing and Software for Big Science 5, 12 (2021) [CrossRef] [Google Scholar]
- The ATLAS Collaboration, Tech. rep., Geneva (2020), https://cds.cern.ch/ record/2729668 [Google Scholar]
- J. Catmore, Proceedings of Science 390, 009 (2021) [Google Scholar]
- M. Barbone, A. Howard, A. Tapper, D. Chen, M. Novak, W. Luk, Journal of Physics: Conference Series 2438, 012023 (2023) [CrossRef] [Google Scholar]
- A.M. Ferrenberg, D.P. Landau, Y.J. Wong, Physical Review Letters 69, 3382 (1992) [CrossRef] [PubMed] [Google Scholar]
- G.K. Savvidy, N.G. Ter-Arutyunyan-Savvidy, Journal of Computational Physics 97, 566 (1991) [CrossRef] [Google Scholar]
- D.E. Knuth, The art of computer programming. Vol. 2: Seminumerical algorithms., 3rd edn. (Bonn: Addison-Wesley, 1998), ISBN 0-201-89684-2 [Google Scholar]
- P. Hellekalek, Don’t Trust Parallel Monte Carlo!, in Proceedings of the Twelfth Workshop on Parallel and Distributed Simulation (IEEE Computer Society, USA, 1998), PADS ’98, pp. 82–89, ISBN 0818684577 [Google Scholar]
- M. Matsumoto, T. Nishimura, ACM Transactions on Modeling and Computer Simulation (TOMACS) 8, 3 (1998) [CrossRef] [Google Scholar]
- K.G. Savvidy, Computer Physics Communications 196, 161 (2015) [CrossRef] [Google Scholar]
- K. Savvidy, G. Savvidy, Chaos Solitons Fractals 91, 33 (2016), 1510.06274 [CrossRef] [Google Scholar]
- F. James, L. Moneta, Computing and Software for Big Science 4, 1 (2020) [CrossRef] [Google Scholar]
- J.K. Salmon, M.A. Moraes, R.O. Dror, D.E. Shaw, Proceedings of 2011 SC - International Conference for High Performance Computing, Networking, Storage and Analysis (2011) [Google Scholar]
- S.L. Jr., LeaDoug, F. H., ACM SIGPLAN Notices 49, 453 (2014) [Google Scholar]
- P. L’Ecuyer, Operations Research 44, 816 (1996) [CrossRef] [Google Scholar]
- cuRAND :: CUDA Toolkit Documentation, https://docs.nvidia.com/cuda/ curand/index.html [Google Scholar]
- Nvidia, NVIDIA A100 Tensor Core GPU Architecture, https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf [Google Scholar]
- Mentor Siemens, Modelsim, https://eda.sw.siemens.com/en-US/ic/ modelsim/ [Google Scholar]
- M. Saito, M. Matsumoto, ACM Transactions on Mathematical Software (TOMS) 39 (2013) [CrossRef] [Google Scholar]
- AMD Xilinx, UltraScale+ FPGAs Product Selection Guide (XMP103), https://docs.xilinx.com/v/u/en-US/ ultrascale-plus-fpga-product-selection-guide [Google Scholar]
- J. van Rantwijk, Pseudo Random Number Generator based on Mersenne Twister MT19937, https://github.com/jorisvr/vhdl_prng/blob/master/rtl/rng_ mt19937.vhdl [Google Scholar]
- Marco Barbone, MIXMAX CUDA source code, https://github.com/ DiamonDinoia/mixmaxCUDA [Google Scholar]
- Andrew W. Rose, MIXMAX VHDL source code, https://github.com/Cefhalic/ MixMax [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.