Open Access
Issue
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
Article Number 11018
Number of page(s) 12
Section Heterogeneous Computing and Accelerators
DOI https://doi.org/10.1051/epjconf/202429511018
Published online 06 May 2024
  1. Agostinelli et al, GEANT4–a simulation toolkit, Nucl. Instrum. Meth. A 506, 250-303 (2003) [CrossRef] [Google Scholar]
  2. The ATLAS Collaboration, The ATLAS Simulation Infrastructure, The European Physical Journal, 70, 823-874 (2010) [CrossRef] [Google Scholar]
  3. The ATLAS Collaboration, The new Fast Calorimeter Simulation in ATLAS, Tech. Rep. ATL-SOFT-PUB-2018-002, (2018) [Google Scholar]
  4. John Nickolls, Ian Buck, Michael Garland, Kevin Skadron, Scalable Parallel Programming with CUDA, ACM Queue vol. 6 no. 2, 40-53 (2008) [CrossRef] [Google Scholar]
  5. Zhihua Dong, Heather Gray, Charles Leggett, Meifeng Lin, Vincent Pascuzzi, Kwangmin Yu, Porting HEP Parameterized Calorimeter Simulation Code to GPUs, Frontiers in Physics: Big Data and AI in High Energy Physics 4 (2021) [Google Scholar]
  6. Trott, Christian R. et al., Kokkos 3: Programming Model Extensions for the Exascale Era, IEEE Transactions on Parallel and Distributed Systems vol. 33 no. 4 805-817 (2022) [CrossRef] [Google Scholar]
  7. H. Carter Edwards et al., Kokkos: Enabling manycore performance portability through polymorphic memory access patterns , Journal of Parallel and Distributed Computing vol. 74 no. 12 3202-3216 (2014) [CrossRef] [Google Scholar]
  8. https://registry.khronos.org/SYCL/ [Google Scholar]
  9. L. Dagum, R. Menon, OpenMP: an industry standard API for shared-memory programming, Computational Science & Engineering, IEEE, vol 5 no. 1, 46-55 (1998) [CrossRef] [Google Scholar]
  10. M. Atif et al., Evaluating Portable Parallelization Strategies for Heterogeneous Architectures in High Energy Physics, arXiv:2306.15869 (2023). [Google Scholar]
  11. M. Lin et al., Portable Programming Model Exploration for LArTPC Simulation in a Heterogeneous Computing Environment: OpenMP vs. SYCL, arXiv:2304.01841 (2023). [Google Scholar]
  12. A. Matthes et al., Tuning and optimization for a variety of many-core architectures without changing a single line of implementation code using the Alpaka library, arXiv:1706.10086 (2017) [Google Scholar]
  13. E. Zenker et al., Alpaka - An Abstraction Library for Parallel Kernel Acceleration, arXiv:1602.08477 (2016) [Google Scholar]
  14. B. Worpitz et al., Investigating performance portability of a highly scalable particle-in-cell simulation code on various multi-core architectures, doi:10.5281/zenodo.49768 (2015) [Google Scholar]
  15. https://github.com/alpaka-group/cupla [Google Scholar]
  16. https://www.anl.gov/hep-cce [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.