Open Access
Issue
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
Article Number 12004
Number of page(s) 8
Section Quantum Computing
DOI https://doi.org/10.1051/epjconf/202429512004
Published online 06 May 2024
  1. W. Guan, G. Perdue, A. Pesah, M. Schuld, K. Terashi, S. Vallecorsa, J.R. Vlimant (2020), 2005.08582 [Google Scholar]
  2. C. Tüysüz, C. Rieger, K. Novotny, B. Demirköz, D. Dobos, K. Potamianos, S. Vallecorsa, J.R. Vlimant, R. Forster, Tech. Rep. University, (2021) [Google Scholar]
  3. A. Di Meglio, M. Doser, B. Frisch, D. Grabowska, M. Pierini, S. Vallecorsa, Tech. rep. (2022), https://zenodo.org/record/5846455 [Google Scholar]
  4. A. Di Meglio, K. Jansen, I. Tavernelli, C. Alexandrou, S. Arunachalam, C.W. Bauer, K. Borras, S. Carrazza, A. Crippa, V. Croft et al., Tech. rep. (2023), arXiv:2307.03236 [hep-ex, physics:hep-lat, physics:hep-th, physics:quant-ph] type: article, http://arxi v.org/abs/2307.03236 [Google Scholar]
  5. J.M. Gambetta, IBM Quantum roadmap to build quantum-centric supercomputers (2021), https://research.ibm.com/blog/ibm-quantum-roadmap-2025 [Google Scholar]
  6. T. Keck, F. Abudinén, F.U. Bernlochner, R. Cheaib, S. Cunliffe, M. Feindt, T. Ferber, M. Gelb, J. Gemmler, P. Goldenzweig et al., Computing and Software for Big Science 3, 6 (2019) [CrossRef] [Google Scholar]
  7. J. Kahn, I. Tsaklidis, O. Taubert, L. Reuter, G. Dujany, T. Boeckh, A. Thaller, P. Goldenzweig, F. Bernlochner, A. Streit et al., Machine Learning: Science and Technology 3, 035012 (2022) [CrossRef] [Google Scholar]
  8. T. Kipf, E. Fetaya, K.C. Wang, M. Welling, R. Zemel, Neural Relational Inference for Interacting Systems (2018), 1802.04687 [Google Scholar]
  9. M. Strobl, E. Kuehn, M. Fischer, A. Streit, Journal of Physics: Conference Series (in review) [Google Scholar]
  10. M. Kobayashi, K. Nakaji, N. Yamamoto, Quantum Machine Intelligence 4, 30 (2022), arXiv:2205.11446 [quant-ph] [CrossRef] [Google Scholar]
  11. A.N.I.S. MD SAJID, Abby-Mitchell, H. Abraham, AduOffei, R. Agarwal, G. Agliardi, M. Aharoni, V. Ajith, I.Y. Akhalwaya, G. Aleksandrowicz et al., Qiskit: An open-source framework for quantum computing (2021) [Google Scholar]
  12. M. Claesen, B. De Moor, Tech. rep. (2015), arXiv:1502.02127 [cs, stat] type: article, http://arxiv.org/abs/1502.02127 [Google Scholar]
  13. C. Moussa, J.N. van Rijn, T. Bäck, V. Dunjko, in Discovery Science, edited by P. Pascal, D. Ienco (Springer Nature Switzerland, Cham, 2022), Vol. 13601, pp. 32–46, ISBN 978-3-031-18839-8 978-3-031-18840-4, series Title: Lecture Notes in Computer Science, https://link.springer.com/10.1007/978-3-031-18840-4_3 [Google Scholar]
  14. P. Jain, A.G. Garcia, Tech. rep. (2023), arXiv:2212.04209 [quant-ph, q-fin] type: article, http://arxiv.org/abs/2212.04209 [Google Scholar]
  15. A. Matic, M. Monnet, J.M. Lorenz, B. Schachtner, T. Messerer, Tech. rep. (2022), arXiv:2204.12390 [quant-ph] type: article, http://arxiv.org/abs/2204.12390 [Google Scholar]
  16. J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algorithms for Hyper-Parameter Optimization, in Advances in Neural Information Processing Systems, edited by J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, K. Weinberger (Curran Associates, Inc., 2011), Vol. 24, https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7a b32cfd12577bc2619bc635690-Paper.pdf [Google Scholar]
  17. K. Mitarai, M. Negoro, M. Kitagawa, K. Fujii, Physical Review A 98, 032309 (2018), arXiv:1803.00745 [quant-ph] [CrossRef] [Google Scholar]
  18. M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, N. Killoran, Physical Review A 99, 032331 (2019), arXiv:1811.11184 [quant-ph] [CrossRef] [Google Scholar]
  19. M. Schuld, R. Sweke, J.J. Meyer, Physical Review A 103, 032430 (2021), arXiv:2008.08605 [quant-ph, stat] [CrossRef] [Google Scholar]
  20. S. Sim, P.D. Johnson, A. Aspuru-Guzik, Advanced Quantum Technologies 2, 1900070 (2019) [CrossRef] [Google Scholar]
  21. T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna: A Next-generation Hyperparameter Optimization Framework, in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2019) [Google Scholar]
  22. J.R. McClean, S. Boixo, V.N. Smelyanskiy, R. Babbush, H. Neven, Nature Communications 9, 4812 (2018) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.