Open Access
Issue
EPJ Web Conf.
Volume 300, 2024
9th Complexity-Disorder Days 2023
Article Number 01007
Number of page(s) 10
DOI https://doi.org/10.1051/epjconf/202430001007
Published online 08 August 2024
  1. S. Dehaene and E. M. Brannon, Space, time and number in the brain: Searching for the foundations of mathematical thought. Academic Press (2012). [Google Scholar]
  2. A. Nieder, Number faculty is rooted in our biological heritage. Trends Cogn. Sci. 21(6), 403–404 (2017). 10.1016/j.tics.2017.03.014 [CrossRef] [Google Scholar]
  3. F. Bremmer, Space perception. Reference Module in Neurosci. Biobehavioral Psychol. (2024). 10.1016/B978-0-12-820480-1.00061-9 [Google Scholar]
  4. H. De Cruz, An enhanced argument for innate elementary geometric knowledge and its philosophical implications. In: B. Van Kerkhove (Ed.) New perspectives on mathematical practices, 185–206 (2009). [Google Scholar]
  5. A. J. van Opstal, Neural encoding of instantaneous kinematics of eye-head gaze shifts in monkey superior colliculus. Comm. Biol. 6(1), 927 (2023). 10.1038/s42003-023-05305-z [CrossRef] [Google Scholar]
  6. R. E. Núñez, Number–biological enculturation beyond natural selection. Trends Cogn. Sci. 21(6), 404405 (2017). 10.1016/j.tics.2017.03.013 [Google Scholar]
  7. Y. Rav, Philosophical problems of mathematics in the light of evolutionary epistemology. Semin. Philos. Math. 6, 1–30 (1988). [Google Scholar]
  8. M. de Paz, From jurisprudence to mechanics: Jacobi, Reech, and Poincaré on convention. Sci. Context 31(2), 223–250 (2018). 10.1017/S0269889718000170 [CrossRef] [PubMed] [Google Scholar]
  9. H. Poincaré, The foundations of science. New York: The Science Press (1913). [Google Scholar]
  10. A. Pellionisz and R. Llinas, Space-time representation in the brain: the cerebellum as a predictive space-time metric tensor. Neuroscience 7(12), 2949–2970 (1982). 10.1016/0306-4522(82)90224-x [Google Scholar]
  11. J. A. Büttner-Ennever (Ed), Neuroanatomy of the oculomotor system. Reviews of oculomotor research Amsterdam: Elsevier (1988). [Google Scholar]
  12. J. A. Büttner-Ennever (Ed), Neuroanatomy of the oculomotor system. Progress in Brain Research 151 Amsterdam: Elsevier (2008). [Google Scholar]
  13. A. K. Moschovakis, C. A. Scudder and S. M. Highstein, The microscopic anatomy and physiology of the mammalian saccadic system. Prog. Neurobiol. 50, 133–254 (1996). 10.1016/s0301-0082(96)00034-2 [CrossRef] [Google Scholar]
  14. A. Berthoz, W. Graf and P. P. Vidal (Eds), The head-neck sensory motor system. Oxford University Press (1992). [CrossRef] [Google Scholar]
  15. B. W. Peterson and F. J. Richmond, Control of head movement. Oxford University Press (1988). [Google Scholar]
  16. L. Goffart, J. Quinet and C. Bourrelly, Neurophysiology of gaze orientation: Core neuronal networks. Reference Module Neurosci. Biobehavioral Psychol. (2024) 10.1016/B978-0-12-820480-1.00062-0 [Google Scholar]
  17. D. H. McDougal and P. D. Gamlin P.D, Autonomic control of the eye. Compr. Physiol. 5, 439e473 (2015). [Google Scholar]
  18. X. Hu, H. Jiang, C. Gu, C. Li and D. L. Sparks, Reliability of oculomotor command signals carried by individual neurons. Proc. Natl. Acad. Sci. U. S. A. 104, 8137–8142 (2007). 10.1073/pnas.0702799104 [CrossRef] [PubMed] [Google Scholar]
  19. M. Xu-Wilson, H. Chen-Harris, D. S. Zee and R. Shadmehr, Cerebellar contributions to adaptive control of saccades in humans. J. Neurosci. 29(41), 1293012939 (2009). 10.1523/JNEUROSCI.3115-09.2009 [CrossRef] [PubMed] [Google Scholar]
  20. D. L. Sparks, R. Holland and B. L. Guthrie, Size and distribution of movement fields in the monkey superior colliculus. Brain Res. 113(1), 21–34 (1976). 10.1016/0006-8993(76)90003-2 [CrossRef] [PubMed] [Google Scholar]
  21. L. Goffart, C. Bourrelly and J. C. Quinton, Neurophysiology of visually-guided eye movements: critical review and alternative viewpoint. J. Neurophysiol. 120, 3234–3245 (2018). 10.1152/jn.00402.2018 [CrossRef] [PubMed] [Google Scholar]
  22. A. F. Fuchs and D. A. Robinson, A method for measuring horizontal and vertical eye movement chronically in the monkey. J. Appl. Physiol. 21(3), 10681070 (1966). 10.1152/jappl.1966.21.3.1068 [CrossRef] [Google Scholar]
  23. L. G. Nowak and J. Bullier, The timing of information transfer in the visual system. In: Kaas, J. et al. (Eds), Extrastriate Cortex. vol. 12. Plenum Press, 205–241 (1997). [CrossRef] [Google Scholar]
  24. M. T. Schmolesky, Y. Wang, D. P. Hanes, K. G. Thompson, S. Leutgeb, J. D. Schall and A. G. Leventhal, Signal timing across the macaque visual system. J. Neurophysiol. 79, 3272–3278 (1998). 10.1152/jn.1998.79.6.3272 [CrossRef] [PubMed] [Google Scholar]
  25. B. Biguer, I. M. L. Donaldson, A. Hein and M. Jeannerod, Neck muscle vibration modifies the representation of visual motion and direction in man. Brain 111(6), 1405–1424 (1988). 10.1093/brain/111.6.1405 [CrossRef] [PubMed] [Google Scholar]
  26. G. M. Gauthier, D. Nommay and J. L. Vercher, Ocular muscle proprioception and visual localization of targets in man. Brain 113(6), 1857–1871 (1990). [CrossRef] [PubMed] [Google Scholar]
  27. L. Goffart, Kinematics and the neurophysiological study of visually-guided eye movements. Prog. Brain Res. 249, 375–384 (2019). 10.1016/bs.pbr.2019.03.027 [CrossRef] [Google Scholar]
  28. L. Goffart and D. Pélisson, Orienting gaze shifts during muscimol inactivation of caudal fastigial nucleus in the cat. I. Gaze dysmetria. J. Neurophysiol. 79, 1942–1958 (1998). 10.1152/jn.1998.79.4.1942 [CrossRef] [PubMed] [Google Scholar]
  29. E. C. Dias and M. A. Segraves, Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades. J. Neurophysiol. 81, 2191–2214 (1999). 10.1152/jn.1999.81.5.2191 [CrossRef] [PubMed] [Google Scholar]
  30. L. Guerrasio, J. Quinet, U. Büttner and L. Goffart, Fastigial oculomotor region and the control of foveation during fixation. J. Neurophysiol. 103, 1988–2001 (2010). 10.1152/jn.00771.2009 [CrossRef] [PubMed] [Google Scholar]
  31. L. Goffart, Z. M. Hafed and R. J. Krauzlis, Visual fixation as equilibrium: evidence from superior colliculus inactivation. J. Neurosci. 32, 10627–10636 (2012). 10.1523/JNEUROSCI.0696-12.2012 [CrossRef] [PubMed] [Google Scholar]
  32. Z. M. Hafed, L. Goffart and R. J. Krauzlis, Superior colliculus inactivation causes stable offsets in eye position during tracking. J. Neurosci. 28, 8124–8137 (2008). 10.1523/JNEUROSCI.1317-08.2008 [CrossRef] [PubMed] [Google Scholar]
  33. C. Bourrelly, J. Quinet and L. Goffart, Pursuit disorder and saccade dysmetria after caudal fastigial inactivation in the monkey. J. Neurophysiol. 120, 1640–1654 (2018). 10.1152/jn.00278.2018 [CrossRef] [PubMed] [Google Scholar]
  34. T. Isa, T. Itouji and S. Sasaki, Control of head movements in the cat: two separate pathways from the superior colliculus to neck motoneurones and their roles in orienting movements. In Shimazu H. and Shinoda Y. (Eds) Vestibular and Brain Stem Control of Eye, Head and Body Movements, Tokyo: Japan Scientific Societies Press, p. 275–284 (1992). [Google Scholar]
  35. M. A. Davis-Lopez de Carrizosa, C. J. MoradoDiaz, J. M. Miller, R. R. de la Cruz and A. M. Pastor, Dual encoding of muscle tension and eye position by abducens motoneurons. J. Neurosci. 31, 2271–2279 (2011). 10.1523/JNEUROSCI.5416-10.2011 [CrossRef] [PubMed] [Google Scholar]
  36. I. Smalianchuk, U. K. Jagadisan and N. J. Gandhi, Instantaneous midbrain control of saccade velocity. J. Neurosci. 38(47), 10156–10167 (2018). 10.1523/JNEUROSCI.0962-18.2018 [CrossRef] [PubMed] [Google Scholar]
  37. D. A. Robinson, Oculomotor control signals. In: Lennerstrand, G., Bach-y-Rita, P. (Eds.), Basic mechanisms of ocular motility and their clinical implications. Pergamon, Oxford, pp. 337–374 (1975). 10.1016/bs.pbr.2021.10.007 [Google Scholar]
  38. V. P. Laurutis and D. A. Robinson, The vestibuloocular reflex during human saccadic eye movements. J. Physiol. 373, 209–233 (1986). 10.1113/jphysiol.1986.sp016043 [CrossRef] [PubMed] [Google Scholar]
  39. D. A. Robinson, Models of oculomotor neural organization. In: Bach-Y-Rita P. and Collins C. C. (Eds), The control of eye movements. Academic Press, new York, pp 519–538 (1971). [CrossRef] [Google Scholar]
  40. D. J. Herzfeld, Y. Kojima, R. Soetedjo and R. Shadmehr, Encoding of action by the Purkinje cells of the cerebellum. Nature 526(7573), 439–442 (2015). 10.1038/nature15693 [CrossRef] [PubMed] [Google Scholar]
  41. Y. Kojima, R. Soetedjo, and A. F. Fuchs, Effects of GABA agonist and antagonist injections into the oculomotor vermis on horizontal saccades. Brain Res. 1366, 93–100 (2010). 10.1016/j.brainres.2010.10.027 [CrossRef] [PubMed] [Google Scholar]
  42. J. Quinet and L. Goffart, Influence of head restraint on visually triggered saccades in the Rhesus monkey. Ann. N.Y. Acad. Sci. 1004, 404–408 (2003). 10.1111/j.1749-6632.2003.tb00248.x [CrossRef] [Google Scholar]
  43. J. G. McElligott and E. L. Keller, Neuronal discharge in the posterior cerebellum: its relationship to saccadic eye movement generation. In: Lennerstrand G., Zee D. S. and E. L. Keller (Eds) Functional basis of ocular motility disorders, pp 463–461 (1982). [Google Scholar]
  44. K. Ohtsuka and H. Noda, Discharge properties of Purkinje cells in the oculomotor vermis during visually guided saccades in the macaque monkey. J. Neurophysiol. 74(5), 1828–1840 (1995). 10.1152/jn.1995.74.5.1828 [CrossRef] [PubMed] [Google Scholar]
  45. C. Helmchen and U. Büttner, Saccade-related Purkinje cell activity in the oculomotor vermis during spontaneous eye movements in light and darkness. Exp. Brain Res. 103, 198–208 (1995). 10.1007/BF00231706 [Google Scholar]
  46. J. Quinet and L. Goffart, Cerebellar control of saccade dynamics: contribution of the fastigial oculomotor region. J. Neurophysiol. 113(9), 3323–3336, (2015). 10.1152/jn.01021.2014 [CrossRef] [PubMed] [Google Scholar]
  47. J. F. Kleine, Y. Guan and U. Buttner, Saccaderelated neurons in the primate fastigial nucleus: what do they encode? J. Neurophysiol. 90(5), 3137–3154 (2003). 10.1152/jn.00021.2003 [CrossRef] [PubMed] [Google Scholar]
  48. A. F. Fuchs, F. R. Robinson and A. Straube, Role of the caudal fastigial nucleus in saccade generation. I. Neuronal discharge pattern. J. Neurophysiol. 70(5), 1723–1740 (1993). 10.1152/jn.1993.70.5.1723 [CrossRef] [PubMed] [Google Scholar]
  49. E. L. Keller, D. P. Slakey and W. F. Crandall, Microstimulation of the primate cerebellar vermis during saccadic eye movements. Brain Res. 288(1-2), 131–143 (1983). 10.1016/0006-8993(83)90087-2 [CrossRef] [PubMed] [Google Scholar]
  50. L. Goffart, L. L. Chen and D. L. Sparks, Saccade dysmetria during functional perturbation of the caudal fastigial nucleus in the monkey. Ann N Y Acad Sci 1004(1), 220–228 (2003). 10.1196/annals.1303.019 [CrossRef] [PubMed] [Google Scholar]
  51. R. Soetedjo and G. D. Horwitz, Closed-loop optogenetic perturbation of macaque oculomotor cerebellum: evidence for an internal saccade model. J. Neurosci. 44(6), 1–15 (2024). [Google Scholar]
  52. L. Goffart, L. L. Chen and D. L. Sparks, Deficits in saccades and fixation during muscimol inactivation of the caudal fastigial nucleus in the rhesus monkey. J. Neurophysiol. 92, 3351–3367 (2004). 10.1152/jn.01199.2003 [CrossRef] [PubMed] [Google Scholar]
  53. C. Bourrelly, J. Quinet and L. Goffart (2021). Bilateral control of interceptive saccades: evidence from the ipsipulsion of vertical saccades after caudal fastigial inactivation. J. Neurophysiol. 125(6), 2068–2083. 10.1152/jn.00037.2021 [CrossRef] [PubMed] [Google Scholar]
  54. O. Hikosaka and R. H. Wurtz, Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in monkey superior colliculus. J. Neurophysiol. 53(1), 266–291 (1985). 10.1152/jn.1985.53.1.266 [CrossRef] [PubMed] [Google Scholar]
  55. A. Berthoz, A. Grantyn and J. Droulez, Some collicular efferent neurons code saccadic eye velocity. Neurosci. Lett. 72(3), 289–294 (1986). 10.1016/0304-3940(86)90528-8 [CrossRef] [Google Scholar]
  56. D. M. Waitzman, T. P. Ma, L. M. Optican and R. H. Wurtz, Superior colliculus neurons mediate the dynamic characteristics of saccades. J. Neurophysiol. 66(5), 1716–1737 (1991). 10.1152/jn.1991.66.5.1716 [CrossRef] [PubMed] [Google Scholar]
  57. W. Y. Choi and D. Guitton, Firing patterns in superior colliculus of head-unrestrained monkey during normal and perturbed gaze saccades reveal short-latency feedback and a sluggish rostral shift in activity. J. Neurosci. 29(22), 7166–7180 (2009). 10.1523/JNEUROSCI.5038-08.2009 [CrossRef] [PubMed] [Google Scholar]
  58. R. W. Anderson, E. L. Keller, N. J. Gandhi and S. Das, Two-dimensional saccade-related population activity in superior colliculus in monkey. J. Neurophysiol. 80(2), 798–817 (1998). 10.1152/jn.1998.80.2.798 [CrossRef] [PubMed] [Google Scholar]
  59. H. H. L. M. Goossens and A. J. Van Opstal, Blinkperturbed saccades in monkey. II. Superior colliculus activity. J. Neurophysiol. 83(6), 3430–3452 (2000). 10.1152/jn.2000.83.6.3430 [CrossRef] [PubMed] [Google Scholar]
  60. E. L. Keller, N. J. Gandhi and S. Vijay Sekaran, Activity in deep intermediate layer collicular neurons during interrupted saccades. Exp. Brain Res. 130, 227237 (2000). 10.1007/s002219900239 [Google Scholar]
  61. D. P. Munoz and R. H. Wurtz, Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and buildup cells. J. Neurophysiol. 73(6), 23132333 (1995). 10.1152/jn.1995.73.6.2313 [Google Scholar]
  62. D. P. Munoz, D. M. Waitzman and R. H Wurtz, Activity of neurons in monkey superior colliculus during interrupted saccades. J. Neurophysiol. 75(6), 2562–2580 (1996). 10.1152/jn.1996.75.6.2562 [CrossRef] [PubMed] [Google Scholar]
  63. C. K. Rodgers, D. P. Munoz, S. H. Scott and M. Paré. Discharge properties of monkey tectoreticular neurons. J. Neurophysiol., 95(6), 3502–3511 (2006). 10.1152/jn.00908.2005 [CrossRef] [PubMed] [Google Scholar]
  64. D. L. Sparks and L. E. Mays, Movement fields of saccade-related burst neurons in the monkey superior colliculus. Brain Res, 190(1), 39–50 (1980). 10.1016/0006-8993(80)91158-0 [CrossRef] [PubMed] [Google Scholar]
  65. C. R. Kaneko, Effect of ibotenic acid lesions of the omnipause neurons on saccadic eye movements in rhesus macaques. J. Neurophysiol. 75(6), 2229–2242 (1996). 10.1152/jn.1996.75.6.2229 [CrossRef] [PubMed] [Google Scholar]
  66. R. Soetedjo, C. R. Kaneko and A. F. Fuchs, Evidence that the superior colliculus participates in the feedback control of saccadic eye movements. J. Neurophysiol. 87(2), 679–695 (2002). 10.1152/jn.00886.2000 [CrossRef] [PubMed] [Google Scholar]
  67. T. R. Peel, S. Dash, S. G. Lomber and B. Corneil, Frontal eye field inactivation alters the readout of superior colliculus activity for saccade generation in a task-dependent manner. J. Comput. Neurosc. 49, 229249 (2021). 10.1007/s10827-020-00760-7 [Google Scholar]
  68. G. Lennerstrand, S. Tian, and T. X. Zhao, Force development and velocity of human saccadic eye movements. I: abduction and adduction. Clin. Vis. Sci. 8, 295–305 (1993). [Google Scholar]
  69. L. Goffart, C. Bourrelly and J. Quinet, Synchronizing the tracking eye movements with the motion of a visual target: basic neural processes. Prog. Brain Res. 236, 243–268 (2017). 10.1016/bs.pbr.2017.07.009 [CrossRef] [Google Scholar]
  70. P. A. Sylvestre and K. E. Cullen, Quantitative analysis of abducens neuron discharge dynamics during saccadic and slow eye movements. J. Neurophysiol. 82: 2612–2632 (1999). 10.1152/jn.1999.82.5.2612 [CrossRef] [PubMed] [Google Scholar]
  71. A. Strassman, S. M. Highstein and R. A. McCrea, Anatomy and physiology of saccadic burst neurons in the alert squirrel monkey. I. Excitatory burst neurons. J. Comp. Neurol. 249: 337–357 (1986). 10.1002/cne.902490303 [CrossRef] [PubMed] [Google Scholar]
  72. A. Strassman, S. M. Highstein and R. A. McCrea Anatomy and physiology of saccadic burst neurons in the alert squirrel monkey. II. Inhibitory burst neurons. J. Comp. Neurol. 249: 358–380 (1986). 10.1002/cne.902490304 [CrossRef] [PubMed] [Google Scholar]
  73. C. A. Scudder, C. S. Kaneko and A. F. Fuchs, The brainstem burst generator for saccadic eye movements: a modern synthesis. Exp. Brain Res. 142: 439–462 (2002). 10.1007/s00221-001-0912-9 [Google Scholar]
  74. E. L. Keller, R. M. McPeek and T. Salz, Evidence against direct connections to PPRF EBNs from SC in the monkey. J. Neurophysiol. 84(3), 1303–1313, (2000). 10.1152/jn.2000.84.3.1303 [CrossRef] [PubMed] [Google Scholar]
  75. H. Spencer, The Principles of Psychology, New York: Appleton and Company (1871). [Google Scholar]
  76. A. Berthoz, Simplexity: Simplifying principles for a complex world (translated by Weiss G). New Haven: Yale Univ. Press (2012). [Google Scholar]
  77. A. Berthoz, Espace perçu, espace vécu, espace conçu. In: A. Berthoz and R. Recht (Eds) Les espaces de l’homme. Paris: Odile Jacob (2005). [Google Scholar]
  78. F. M. Wuketits, Evolutionary epistemology a challenge to science and philosophy. In: F.M. Wuketits (Ed) Concepts and approaches in evolutionary epistemology, Reidel Publishing Company (1984). [CrossRef] [Google Scholar]
  79. L. Goffart, Le cerveau en trompe-l’œil des sciences cognitives: Critique du plongement dans le fonctionnement cérébral de notions qui lui sont étrangères. Doctoral thesis in history, philosophy and sociology of sciences. Aix Marseille Université (2022). https://amu.hal.science/tel-04070171 [Google Scholar]
  80. M. Solomon, Commentary on Alison Gopnik’s “The scientist as child”. Philos. of Sci. 63(4), 547–551 (1996). 10.1086/289975 [CrossRef] [Google Scholar]
  81. B. Lahire, L’esprit sociologique. La découverte (2007). [Google Scholar]
  82. E. Durkheim, Sociologie religieuse et théorie de la connaissance. Rev. Métaphys. Morale 17(6): 733–758 (1909). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.