Open Access
Issue |
EPJ Web Conf.
Volume 300, 2024
9th Complexity-Disorder Days 2023
|
|
---|---|---|
Article Number | 01010 | |
Number of page(s) | 22 | |
DOI | https://doi.org/10.1051/epjconf/202430001010 | |
Published online | 08 August 2024 |
- J. P. Joule, On the heat evolved by metallic conductors of electricity, and in the cells of a battery during electrolysis, Phil. Mag. XIX, 260–277 (1841) [Google Scholar]
- E. Lenz, Ueber die Gesetze der Wärme-Entwickelung durch den galvanischen Strom, Bulletin de la Classe physico-mathématique de l’Académie impériale des Sciences de Saint-Pétersbourg I, 209–253 (1843) E. Lenz, Ueber die Gesetze der Wärmeentwickelung durch den galvanischen Strom, Bulletin de la Classe physico-mathématique de l’Académie impériale des Sciences de Saint-Pétersbourg II, 161–188 (1843) [Google Scholar]
- A. Volta, De l’électricité dite galvanique, Annales de Chimie 40, 225–256 (1801) [Google Scholar]
- R. N. Varney and L. H. Fisher, Electromotive force : Volta’s forgotten concept, Am. J. Phys. 48, 405–408 (1980) [CrossRef] [Google Scholar]
- L. Viennot, Raisonner en physique : La part du sens commun (de Boeck, Bruxelles, 1996) p. 195 Reasoning in Physics : The part of common sense (Kluwer, Dordrecht, 2001) p. 177 (English translation) [Google Scholar]
- E. A. Guggenheim, Thermodynamics: An Advanced Treatment for Chemists and Physicists 5th edn (North-Holland Publishing, Amsterdam, 1967) p. 301 E. A. Guggenheim, Thermodynamique (Dunod, Paris, 1964) pp. 353–354 (French translation) [Google Scholar]
- P. Horowitz and W. Hill, The Art of Electronics 3rd edn (Cambridge University Press, Cambridge, 2015) p. 1 [Google Scholar]
- E. Bringuier, The thermodynamical foundation of electronic conduction in solids, Eur. J. Phys. 39, 025101 (2018) [Google Scholar]
- T. Ho, D. Toh and B. Ricardo, Electromotive force (emf) for the confused, Eur. J. Phys. 43, 015202 (2022) [CrossRef] [Google Scholar]
- S. Holzner, Physics I for Dummies 2nd edn (Wiley, Hoboken, NJ, 2011) pp. 315–316 [Google Scholar]
- P. Drude, Zur Elektronentheorie der Metalle. I Teil, Ann. Phys. (Lpz) 306, 566–613 (1900) P. Drude, Zur Elektronentheorie der Metalle. II Teil, Ann. Phys. (Lpz) 308, 369–402 (1900) P. Drude, Zur Elektronentheorie der Metalle. Berichtigung, Ann. Phys. (Lpz) 312, 687–692 (1902) [CrossRef] [Google Scholar]
- A. Krönig, Grundzüge einer Theorie der Gase, Ann. Phys. (Lpz) 175, 315–322 (1856) [CrossRef] [Google Scholar]
- H. A. Lorentz, Le mouvement des électrons dans les métaux, Arch. Néerland. Sci. Exact. et Nat. (The Hague) 10, 336–371 (1905) H. A. Lorentz, The Theory of Electrons 2nd edn (Dover, New York, 1952) section 29 [Google Scholar]
- E. A. Uehling and G. E. Uhlenbeck, Transport phenomena in Einstein–Bose and Fermi–Dirac gases. I, Phys. Rev. 43, 552–561 (1933) [Google Scholar]
- A. Sommerfeld, Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik. I. Teil: Allgemeines, Strömungsund Austrittsvorgänge, Z. Phys. 47, 1–32 (1928) A. Sommerfeld, Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik. II. Teil: Thermo-elektrische, galvano-magnetische und thermomagnetische Vorgänge, Z. Phys. 47, 45–60 (1928) [Google Scholar]
- F. Bloch, Über die Quantenmechanik der Elektronen in Kristallgittern, Z. Phys. 52, 555–600 (1928) [Google Scholar]
- L. H. Hoddeson and G. Baym, The development of the quantum-mechanical theory of metals: 1900–28, Proc. Roy. Soc. London A 371, 8–23 (1980) [CrossRef] [Google Scholar]
- R. E. Peierls, Recollections of early solid state physics, Proc. Roy. Soc. London A 371, 28–38 (1980) [Google Scholar]
- G. Busch, Early history of the physics and chemistry of semiconductors — from doubts to fact in a hundred years, Eur. J. Phys. 10, 254–265 (1989) [Google Scholar]
- E. Bringuier, Electron drift and diffusion in a high electric field, Phys. Rev. B 58, 4543–4552 (1998) [CrossRef] [Google Scholar]
- B. K. Ridley, Quantum Processes in Semiconductors 4th edn (Clarendon, Oxford, 1999) chapter 12 [Google Scholar]
- A. Leggett, in Proceedings of 1983 Tokyo International Symposium Foundations of Quantum Mechanics in the Light of New Technology (World Scientific, Singapore, 1984) p. 264 [Google Scholar]
- A. Leggett, Reflections on the quantum measurement paradox, Quantum Implications: Essays in Honour of David Bohm, edited by B. J. Hiley and F. David Peat (Routledge, London, 1984) pp. 85–104 [Google Scholar]
- A. Leggett, Quantum and classical concepts at the one-electron level, Nanostructure Physics and Fabrication, edited by M. A. Reed and W. P. Kirk (Academic, New York, 1989) pp. 31–42 [Google Scholar]
- B. Weber, S. Mahapatra, H. Ryu et al., Ohm’s law survives to the atomic scale, Science 335, 64–67 (2012) [CrossRef] [PubMed] [Google Scholar]
- D. K. Ferry, Ohm’s law in a quantum world, Science 335, 45–46 (2012) [CrossRef] [PubMed] [Google Scholar]
- A. P. Horsfield, D. R. Bowler, A. J. Fisher, T. N. Todorov and M. J. Montgomery, Power dissipation in nanoscale conductors : classical, semi-classical and quantum dynamics, J. Phys.: Condens. Matter 16, 3609–3622 (2004) [CrossRef] [Google Scholar]
- C. M. Bustamante, T. N. Todorov, C. G. Sánchez, A. Horsfield and D. A. Scherlis, A simple approximation to the electron-phonon interaction in population dynamics, J. Chem. Phys. 153, 234108 (2020) [CrossRef] [PubMed] [Google Scholar]
- C. Kittel, Introduction to Solid State Physics 8th edn (Wiley, New York, 2005) chapters 4 and 5 [Google Scholar]
- J. Bardeen and W. Shockley, Deformation potentials and mobilities in non-polar crystals, Phys. Rev. 80, 72–80 (1950) [CrossRef] [Google Scholar]
- L. J. Sham and J. M. Ziman, The electron-phonon interaction, Solid State Physics vol. 15 (1963), edited by F. Seitz and D. Turnbull, pp. 221–298 [CrossRef] [Google Scholar]
- R. C. Bourret, Coherence properties of blackbody radiation, Nuovo Cimento XVIII, 347–356 (1960) [CrossRef] [Google Scholar]
- E. Bringuier, The basis of the semiclassical description of electron transport in solids, Eur. J. Phys. 42, 025502 (2021) [CrossRef] [Google Scholar]
- E. Bringuier, Disorder-induced quantum-to-classical transition, or how the world becomes classical, Eur. Phys. J. Web Conf. 263, 01011 (2022) [CrossRef] [EDP Sciences] [Google Scholar]
- J. M. Ziman, Models of Disorder: The theoretical physics of homogeneously disordered systems (Cambridge University Press, Cambridge, 1979) [Google Scholar]
- E. Vanmarcke, Random Fields (The MIT Press, Cambridge, MA, 1983) p. 31 [Google Scholar]
- F. B. Pedersen, Simple derivation of the effectivemass equation using a multiple-scale technique, Eur. J. Phys. 18, 43–45 (1997) [CrossRef] [Google Scholar]
- E. C. McIrvine and E. W. Overhauser, New quantum-mechanical representation, Phys. Rev. 115, 1531–1536 (1959) [CrossRef] [Google Scholar]
- C. Cohen-Tannoudji, B. Diu and F. Laloë, Mécanique quantique tome III (CNRS Editions, Paris, 2017) pp. 735–769 ; Quantum Mechanics vol. 3 (Wiley, New York, 2020) pp. 2297-2323 [Google Scholar]
- M. Mariño, Advanced Topics in Quantum Mechanics (Cambridge University Press, Cambridge, 2022) p. 131 [Google Scholar]
- D. E. Woodward, E. Randall, J. R. Sobehart et al., Electron nonlocality in semiconductors, Z. angew. Math. Mech. 76 (S2), 285–288 (1996) [Google Scholar]
- R. Omnès, Les Indispensables de la mécanique quantique (Odile Jacob, Paris, 2006) p. 224 [Google Scholar]
- L. Shifren and D. K. Ferry, A Wigner-functionbased ensemble-Monte–Carlo approach for accurate incorporation of quantum effects in device simulation, J. Comput. Electron. 1, 55–58 (2002) [CrossRef] [Google Scholar]
- A. H. Nayfeh, Perturbation Methods (Wiley, New York, 1973) chapter 6 [Google Scholar]
- N. G. van Kampen, Elimination of fast variables, Phys. Reports 124, 69–160 (1985) [CrossRef] [Google Scholar]
- C. Henkel, Transfert radiatif et transport d’atomes Rapport de stage post-doctoral à l'Ecole Centrale de Paris, 1997, arXiv:physics/0505023 [Google Scholar]
- L. Ryzhik, G. Papanicolaou and J. B. Keller, Transport equations for elastic and other waves in random media, Wave Motion 24, 327–370 (1996) [CrossRef] [Google Scholar]
- C. Henkel, Coherent transport, C. R. Acad. Sci. Paris 2, 573–580 (2001) [Google Scholar]
- A. Messiah, Mécanique quantique (Dunod, Paris, 1959) chapters XII and XXI [Google Scholar]
- P. M. Richards, Evolution of energy distribution in a model system without conventional Lorentzian lifetime broadening, Phys. Rev. B 60, 4778–4783 (1999) [CrossRef] [Google Scholar]
- A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961) p. 283 [Google Scholar]
- B. d’Espagnat, Conceptual Foundations of Quantum Mechanics 2nd edn (Benjamin, Reading, MA, 1976) [Google Scholar]
- D. Querlioz and P. Dollfus, The Wigner–Monte-Carlo Method for Nanoelectronic Devices (ISTE–Wiley, London, 2010) chapter 1 [Google Scholar]
- L. W. Nordheim, On the kinetic method in the new statistics and its application in the electron theory of conductivity, Proc. Roy. Soc. London A CXIX, 689–698 (1928) [Google Scholar]
- E. Bringuier, Nonequilibrium statistical mechanics of drifting particles, Phys. Rev. E 61, 6351–6358 (2000) [CrossRef] [PubMed] [Google Scholar]
- E. Bringuier, The Boltzmann equation and relaxation-time approximation for electron transport in solids, Eur. J. Phys. 40, 025103 (2019) [CrossRef] [Google Scholar]
- J. M. Ziman, Elements of Advanced Quantum Theory (Cambridge University Press, Cambridge, 1969) section 2.4 [Google Scholar]
- M. Surdin, P. Braffort and A. Taboni, Black-body radiation law deduced from stochastic electrodynamics, Nature 5034, 405–406 (1966) [CrossRef] [Google Scholar]
- T. H. Boyer, Stochastic electrodynamics: The closest classical approximation to quantum theory, Atoms 7, 29 (2019) [CrossRef] [Google Scholar]
- S. Haroche, La Lumière révélée: De la lunette de Galilée à l’étrangeté quantique (Odile Jacob, Paris, 2020) pp. 344–345 [Google Scholar]
- A. I. Khinchin, Mathematical Foundations of Statistical Mechanics (Dover, New York, 1949) section 8 [Google Scholar]
- L. D. Landau and E. M. Lifshitz, Statistical Physics 2nd edn (Pergamon, Oxford, 1959) section 61 [Google Scholar]
- P. Debye, Zustandsgleichung und Quantenhypothese mit einem Anhang über Wärmeleitung, Vorträge über die kinetische Theorie der Materie und der Elektrizität, edited by M. Planck (Teubner, Leipzig, 1914) pp. 17–60 [Google Scholar]
- R. Peierls, Zur kinetischen Theorie der Wärmeleitung in Kristallen, Ann. Phys. (Lpz) 3, 1055– 1101 (1929) R. Peierls, On the kinetic theory of thermal conduction in crystals, Selected Scientific Papers of Sir Rudolf Peierls – With Commentary, edited by R. H. Dalitz and Sir Rudolf Peierls (World Scientific, Singapore, 1997) pp. high-field transport problems, Am. J. Phys. 66, 995–1002 (1998) [Google Scholar]
- R. E. Peierls, Bird of Passage: Recollections of a Physicist (Princeton University Press, Princeton, NJ, 1985) pp. 41–44 [Google Scholar]
- J. E. Carroll, Hot Electron Microwave Generators (Edward Arnold, London, 1970) [Google Scholar]
- M. O. Vassell and E. M. Conwell, High-field electron distribution in GaAs, Phys. Lett. 21, 612–614 (1966) [CrossRef] [Google Scholar]
- R. Landauer, Nonlinearity : Historical and technological view, Nonlinearity in Condensed Matter, edited by A. R. Bishop et al. (Springer, Berlin, 1987) pp. 2–22 [CrossRef] [Google Scholar]
- L. Erdös, Linear Boltzmann equation as the long-time dynamics of an electron weakly coupled to a phonon field, J. Stat. Phys. 107, 1043–1127 (2002) [CrossRef] [Google Scholar]
- E. Bringuier, Disorder-enhanced luminescence kinetics in volcanic feldspars, Eur. Phys. J. Web Conf. 244, 01012 (2020) [Google Scholar]
- B. H. Lavenda, Statistical Physics: A probabilistic approach (Wiley, New York, 1991) p. 260 [Google Scholar]
- B. Diu, C. Guthmann, D. Lederer and B. Roulet, Thermodynamique (Hermann, Paris, 2007) p. 282 [Google Scholar]
- B. Brunhes, La Dégradation de l’énergie (Flammarion, Paris, 1909) [Google Scholar]
- P. W. Bridgman, The Nature of Thermodynamics (Cambridge University Press, Cambridge, MA, 1941) p. 147 [Google Scholar]
- C. Kittel and H. Kroemer, Thermal Physics 2nd edn (Freeman, San Francisco, CA, 1980) p. 250 [Google Scholar]
- V. Kolobov and V. Godyak, Electron kinetics in low-temperature plasmas, Phys. Plasmas 26, 060601 (2019) [CrossRef] [Google Scholar]
- P. Degond, C. D. Levermore and C. Schmeiser, A note on the energy-transport limit of the semiconductor Boltzmann equation, Transport in Transition Regimes, edited by N. Ben Abdallah et al. (Springer, New York, 2004) pp. 137–153 [CrossRef] [Google Scholar]
- A. Jüngel, Energy transport in semiconductor devices, Math. Comput. Model. Dyn. Syst. 16, 1–22 (2010) [CrossRef] [Google Scholar]
- E. Bringuier, Fokker–Planck approach to nonlocal high-field transport, Phys. Rev. B 56, 5328–5331 (1997) [CrossRef] [Google Scholar]
- T. Kurosawa, Notes on the theory of hot electrons in semiconductors, J. Phys. Soc. Japan 20, 937–942 (1965) [CrossRef] [Google Scholar]
- E. Bringuier, Use of the Fokker–Planck equation in high-field transport problems, Am. J. Phys. 66, 995–1002 (1998) [CrossRef] [Google Scholar]
- E. Bringuier, The current equation in strong electric fields, Phil. Mag. B 79, 1659–1672 (1999) [CrossRef] [Google Scholar]
- E. Bringuier, Electrocinétique : Transport de l’électricité dans les milieux matériels (CNRS Editions, Paris, 2005) chapters 13–15 [Google Scholar]
- E. A. Desloge, Statistical Physics (Holt, Rinehart and Winston, New York, 1966) chapter 31 [Google Scholar]
- R. E. Robson, T. J. Mehrling and J. Osterhoff, Great moments in kinetic theory : 150 years of Maxwell’s (other) equations, Eur. J. Phys. 38, 065103 (2017) ; erratum 39, 029601 (2018) 15–48 (English translation) [Google Scholar]
- N. Singh, Two-temperature model of nonequilibrium electron relaxation : A review, Int. J. Mod. Phys. B 24, 1141–1158 (2010) [CrossRef] [Google Scholar]
- B. K. Ridley, Quantum Processes in Semiconductors 4th edn (Clarendon, Oxford, 1999) section 4.7 [Google Scholar]
- E. Abrahams, Electron-electron scattering in alkali metals, Phys. Rev. 95, 839–840 (1954) [CrossRef] [Google Scholar]
- D. Pines, Electron interaction in metals, Solid State Physics vol. 1 (1955), edited by F. Seitz and D. Turnbull, pp. 367–450 [Google Scholar]
- D. Pines, Collective energy losses in solids, Rev. Mod. Phys. 28, 184–199 (1956) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.