Open Access
Issue
EPJ Web Conf.
Volume 302, 2024
Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo (SNA + MC 2024)
Article Number 03008
Number of page(s) 10
Section Thermal-Hydraulics
DOI https://doi.org/10.1051/epjconf/202430203008
Published online 15 October 2024
  1. H. Edelsbrunner, J. Harer, Computational Topology: An Introduction (American Mathematical Society, 2009) [Google Scholar]
  2. J. Tierny, Topological Data Analysis for Scientific Visualization (Springer, 2018), ISBN 978-3-319-71507-0 [Google Scholar]
  3. H. Edelsbrunner, J. Harer et al., Persistent homology-a survey (Providence, RI: American Mathematical Society, 2008), Vol. 453, pp. 257–282 [Google Scholar]
  4. Y. Singh, C.M. Farrelly, Q.A. Hathaway, T. Leiner, J. Jagtap, G.E. Carlsson, B.J. Erickson, Topological data analysis in medical imaging: current state of the art, in Insights Imaging (2023), Vol. 14 [Google Scholar]
  5. A. Gyulassy, P. Bremer, R. Grout, H. Kolla, J. Chen, V. Pascucci, Stability of Dissipation Elements: A case study in combustion, in CGF (2014) [Google Scholar]
  6. N. Shivashankar, P. Pranav, V. Natarajan, R. van de Weygaert, E.P. Bos, S. Rieder, Felix: A Topology Based Framework for Visual Exploration of Cosmic Filaments (IEEE, 2016) [Google Scholar]
  7. C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. De Floriani, G. Scheuermann, H. Hagen, C. Garth, A Survey of Topology-based Methods in Visualization, in CGF (2016) [Google Scholar]
  8. T. Günther, I. Baeza Rojo, in Topological Methods in Data Analysis and Visualization VI (Springer, 2021) [Google Scholar]
  9. L. Ceurvorst, S. Khan, C. Mailliet, D. Martinez, N. Izumi, P.D. Nicola, J.D. Nicola, T. Goudal, V. Bouffetier, D. Kalantar et al., Post-processing of face-on radiographic images for quantitative analysis in ablative Rayleigh-Taylor instability experiments (Elsevier, 2020), Vol. 37, p. 100851, ISSN 15741818 [Google Scholar]
  10. J. Kasten, J. Reininghaus, I. Hotz, H. Hege, Two-dimensional time-dependent vortex regions based on the acceleration magnitude, in IEEE TVCG (2011) [Google Scholar]
  11. H. Carr, J. Snoeyink, U. Axen, Computing contour trees in all dimensions, in Symp. on Dis. Alg. (2000) [Google Scholar]
  12. H. Edelsbrunner, J. Harer, A. Zomorodian, Hierarchical morse complexes for piecewise linear 2-manifolds, in SoCG (2001) [Google Scholar]
  13. A. Gyulassy, P. Bremer, V. Pascucci, Shared-Memory Parallel Computation of Morse- Smale Complexes with Improved Accuracy (2018) [Google Scholar]
  14. L. Yan, T.B. Masood, R. Sridharamurthy, F. Rasheed, V. Natarajan, I. Hotz, B. Wang, Scalar Field Comparison with Topological Descriptors: Properties and Applications for Scientific Visualization (2021) [Google Scholar]
  15. J. Ahrens, B. Geveci, C. Law, ParaView: An End-User Tool for Large-Data Visualization, in The Visualization Handbook (Academic Press, Inc., 2005), pp. 717–731 [CrossRef] [Google Scholar]
  16. J. Tierny, G. Favelier, J.A. Levine, C. Gueunet, M. Michaux, The Topology ToolKit, in IEEE Transactions on Visualization and Computer Graphics (Proc. of IEEE VIS) (2017), https://topology-tool-kit.github.io [Google Scholar]
  17. T.F. Banchoff, Critical Points and Curvature for Embedded Polyhedral Surfaces (1970) [Google Scholar]
  18. H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological Persistence and Simplification (2002) [Google Scholar]
  19. D. Cohen-Steiner, H. Edelsbrunner, J. Harer, Stability of persistence diagrams, in SoCG (2005) [Google Scholar]
  20. J. Munkres, Algorithms for the Assignment and Transportation Problems, in Journal of the Society of Industrial and Applied Mathematics (1957), Vol. 5, pp. 32–38 [CrossRef] [Google Scholar]
  21. J. Vidal, J. Budin, J. Tierny, Progressive Wasserstein Barycenters of Persistence Diagrams, in IEEE TVCG (2019) [Google Scholar]
  22. H. Edelsbrunner, J. Harer, A. Zomorodian, Hierarchical Morse-Smale Complexes for Piecewise Linear 2-Manfiolds (2003) [Google Scholar]
  23. A. Casner, Recent progress in quantifying hydrodynamics instabilities and turbulence in inertial confinement fusion and high-energy-density experiments, in Philosophical Transactions of the Royal Society A (The Royal Society Publishing, 2021), Vol. 379 [Google Scholar]
  24. G.H. McCall, Cloud and microjet mix: A possible source of yield limitation of the National Ignition Facility targets, in Physics of Plasmas (AIP Publishing, 2023), Vol. 30 [CrossRef] [Google Scholar]
  25. A. Casner, V. Smalyuk, L. Masse, I. Igumenshchev, S. Liberatore, L. Jacquet, C. Chicanne, P. Loiseau, O. Poujade, D. Bradley et al., Designs for highly nonlinear ablative Rayleigh-Taylor experiments on the National Ignition Facility, in Physics of Plasmas (AIP Publishing, 2012), Vol. 19 [CrossRef] [PubMed] [Google Scholar]
  26. O. Sadot, V.A. Smalyuk, J.A. Delettrez, D.D. Meyerhofer, T.C. Sangster, R. Betti, V.N. Goncharov, D. Shvarts, Observation of Self-Similar Behavior of the 3D, Nonlinear Rayleigh-Taylor Instability, in Phys. Rev. Lett. (American Physical Society, 2005) [Google Scholar]
  27. F. Vivodtzev, A. Casner, L. Masse, L. Ceurvorst, S. Khan, V. Smalyuk, Poster: Topological Data Analysis of3D Ablative Rayleigh-Taylor Instability Dataset for Automatic Segmentation, in The 13th IEEE Symposium on Large Data Analysis and Visualization, LDAV 2023 (2023) [Google Scholar]
  28. C. Mailliet, Etude expérimentale et numérique du stade fortement non-linéaire de l’Instabilité de Rayleigh-Taylor au front d’ablation en attaque directe, Doctoral dissertation of the Université de Bordeaux (2018) [Google Scholar]
  29. E.F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical introduction (Springer Berlin Heidelberg, 2009) [CrossRef] [Google Scholar]
  30. T. Bridel-Bertomeu, Immersed boundary conditions for hypersonic flows using ENOlike least-square reconstruction, in Computers and Fluids (2020), Vol. 215 [Google Scholar]
  31. M.S. Liou, A sequel to AUSM, Part II: AUSM+-up for all speeds, in Journal of computational physics (Elsevier, 2006), Vol. 214, pp. 137–170 [CrossRef] [Google Scholar]
  32. M. Castro, B. Costa, W.S. Don, High order weighted essentially non-oscillatory WENO- Z schemes for hyperbolic conservation laws, in Journal of Computational Physics (Elsevier, 2011), Vol. 230, pp. 1766–1792 [CrossRef] [Google Scholar]
  33. S. Gottlieb, C.W. Shu, Total variation diminishing Runge-Kutta schemes, in Mathematics of computation (1998), Vol. 67, pp. 73–85 [CrossRef] [Google Scholar]
  34. F. Nauleau, F. Vivodtzev, T. Bridel-Bertomeu, H. Beaugendre, J. Tierny, Topological Analysis of Ensembles of Hydrodynamic Turbulent Flows -An Experimental Study, in Proc. of IEEE Symposium on Large Data Analysis and Visualization (2022) [Google Scholar]
  35. L. Fu, X.Y. Hu, N.A. Adams, A family of high-order targeted ENO schemes for compressible-fluid simulations, in Journal of Computational Physics (Elsevier, 2016), Vol. 305, pp. 333–359 [CrossRef] [Google Scholar]
  36. M. Pont, J. Vidal, J. Delon, J. Tierny, Wasserstein Distances, Geodesics and Barycenters of Merge Trees (2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.