Open Access
Issue
EPJ Web Conf.
Volume 302, 2024
Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo (SNA + MC 2024)
Article Number 04003
Number of page(s) 24
Section Monte-Carlo Transport Codes: Algorithms, HPC & GPU
DOI https://doi.org/10.1051/epjconf/202430204003
Published online 15 October 2024
  1. Web, https://riscv.org/risc-v-isa (2024) Berkeley Architectire Research (2024) About the RISC-V ISA. https://riscv.org/risc-v-isa [Google Scholar]
  2. Gianna P. (2024) Occamy: A 432-Core 28.1 DP-GFLOP/s/W 83% FPU Utlization Dual- Chiplet, Dual-HBM2E RISC-V-based Accelerator for Stencil and Sparse Linear Algebra Computations with 8-to-64-bit Floating-Point Support in 12nm FinFET, 2024 IEEE Symposium on VLSI Technology & Circuits, Honolulu, Hawaii, June 16-20, 2024. [Google Scholar]
  3. Mach S., Schuiki F., Zaruba F., Benini L. (2021) IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 29, 774–787 [CrossRef] [Google Scholar]
  4. Bertaccini L., Paulin G., Fischer T., Mach S., Benini L. (2022) Proceedings of IEEE 29th Symposium on Computer Arithmetic ARITH2022, Sept. 12-14 Lyon France, https://doi.org/10.1109/ARITH54963.2022.00010 [Google Scholar]
  5. Chen C. (2020) Xuantie-910: Innovating Cloud and Edge Computing by RISC-V, 2020 IEEE Hot Chips 32 Symposium (HCS), Palo Alto, CA, USA, 2020, 1–19. https://doi.org/10.1109/HCS49909.2020.9220630 [Google Scholar]
  6. T-Head (2021) Open-sourced C910 RISC-V CPU. https://github.com/T-head-Semi/openc910 [Google Scholar]
  7. Romano P., Horelik N., Herman B., Nelson A., Forget B., Smith K. (2015) OpenMC: A state- of-the-art Monte Carlo code for research and development, Annuals of Nuclear Energy, 82, 90–97. https://doi.org/10.1016/j.anucene.2014.07.048 [CrossRef] [Google Scholar]
  8. Godfrey A. (2014) VERA Core Physics Benchmark Progression Problem Specifications, Revision 4, CASL Technical Report: CASL-U-2012-0131-004, August 29, 2014. [Google Scholar]
  9. Liu C. (2022) Doppler broadening using discrete cosine transform and kernel reconstruction for spatially variable media, Annuals of Nuclear Energy, 174, 109150. https://doi.org/10.1016/j.anucene.2022.109150 [CrossRef] [Google Scholar]
  10. Huang T., Li Z., Wang K., Guo X., Liang J. (2021) Hybrid windowed networks for on- the-fly Doppler broadening in RMC code, Nuclear Science and Technology, 32: 62. https://doi.org/10.1007/s41365-021-00901-2 [CrossRef] [Google Scholar]
  11. Pignet A., Leal L., Jaiswal V. (2022) Cross Section Doppler Broadening prediction using Physically Informed Deep Neural Networks, arXiv:2208.07224. https://doi.org/10.48550/arXiv.2208.07224 [Google Scholar]
  12. Raissi M., Perdikaris P., Karniadakis G. (2019) Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, 378, 686–707. https://doi.org/10.1016/j.jcp.2018.10.045 [Google Scholar]
  13. C. Liu (2023) FrendyPlus: An Extensible Nuclear Data Processing Code Interfacing Frendy, Proceeding of RPHA2023, Oct. 24-26, Gyeongju South Korea [Google Scholar]
  14. New Compute Laboratory (2023) FrendyPlus: An Extensible Nuclear Data Processing Code Interfacing Frendy https://jihulab.com/newcomputelab/frendyplus [Google Scholar]
  15. Yesilyurt G., Martin W., Brown F. (2012) On-the-Fly Doppler Broadening for Monte Carlo Codes, Nuclear Science and Engineering, 171, 3. https://doi.org/10.13182/NSE11-67 [Google Scholar]
  16. Ducru P., Josey C., Dibert K., Sobes V., Forget B., Smith K., (2017) Kernel reconstruction methods for Doppler broadening-temperature interpolation by linear combination of reference cross sections at optimally chosen temperatures, Journal of Computational Physics, 335, 535–557. https://doi.Org/10.1016/j.jcp.2017.01.039 [CrossRef] [Google Scholar]
  17. Perotti M., Cavalcante M., Wistoff N., Andri R., Cavigelli L., Benini L. (2022) A “New Ara” for Vector Computing: An Open Source Highly Efficient RISC-V V 1.0 Vector Processor Design, 2022 IEEE 33rd International Conference on Application-specific Systems, Architectures and Processors (ASAP). https://doi.org/10.1109/ASAP54787.2022.00017 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.