Open Access
Issue |
EPJ Web Conf.
Volume 302, 2024
Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo (SNA + MC 2024)
|
|
---|---|---|
Article Number | 09003 | |
Number of page(s) | 10 | |
Section | Variance Reduction Techniques | |
DOI | https://doi.org/10.1051/epjconf/202430209003 | |
Published online | 15 October 2024 |
- B. Efron. “Bootstrap Methods: Another Look at the Jackknife”. In: The Annals of Statistics 7, 1 (1979), pp. 1-26. DOI: 10.1214/aos/1176344552. [CrossRef] [Google Scholar]
- B. Sjenitzer. “The Dynamic Monte Carlo Method for Transient Analysis of Nuclear Reactors”. In: (2013). doi: https://doi.org/10.4233/uuid:6a4bfa4c-2d1f-4648-9698-6eb7ec7e2d11. [Google Scholar]
- B. Sjenitzer and J. Hoogenboom. “Dynamic Monte Carlo Method for Nuclear Reactor Kinetics Calculations”. In: (2013). doi: https://doi.org/10.13182/NSE12-44. [Google Scholar]
- M. Faucher. “Coupling between Monte Carlo neutron transport and thermal-hydraulics for the simulation of transients due to reactivity insertions”. In: (2019). [Google Scholar]
- N. Helwig. Nonparametric Bootstrap in R. url: http://users.stat.umn.edu/~helwig/notes/npboot-notes.html. (accessed: 14.02.2024). [Google Scholar]
- T. Booth. “A weight (charge) conserving importance-weighted comb for Monte Carlo”. In: (1996). url: https://www.osti.gov/biblio/204256. [Google Scholar]
- M. Kowalski et al. “SCONE: A Student-Oriented Modifiable Monte Carlo Particle Transport Framework”. In: Journal of Nuclear Engineering 2, 1 (2021), pp. 57-64. doi: https://doi.org/10.3390/jne2010006. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.