Open Access
Issue |
EPJ Web Conf.
Volume 302, 2024
Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo (SNA + MC 2024)
|
|
---|---|---|
Article Number | 14002 | |
Number of page(s) | 10 | |
Section | Monte Carlo Simulation: Applications / Detectors | |
DOI | https://doi.org/10.1051/epjconf/202430214002 | |
Published online | 15 October 2024 |
- A. Lyoussi et al., ISMART a collaborative project on innovative sensor for material ageing and radiation testing: European innovative project for SiC applications in harsh media, in CCAV, I_SMART Proposal/Exhibit 1, KIC Inno Energy, Grenoble, France (2012) [Google Scholar]
- K. Zhou, L. Wang, L.-G. Pang and S. Shi, Exploring QCD matter in extreme conditions with Machine Learning, Progress in Particle and Nuclear Physics, p. 104084 (2023) [Google Scholar]
- R. Antoni, P.-G. Allinei and L. Bourgois, Prediction of fast neutron spectra with a spherical TEPC using a machine-learning algorithm, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1050, p. 168139 (2023) [Google Scholar]
- G. Kramberger, Solid State Detectors for High Radiation Environments, Particle Physics Reference Library, Springer, Cham, p. 965–1034 (2020) [Google Scholar]
- L. Sobczak, Dimensionnement d’un d’etecteur diamant pour la spectrométrie de neutrons rapides à partir d’une mesure micro-dosimétrique, Rapport de stage, CEA Cadarache (2022) [Google Scholar]
- G. A. Santa Cruz, Microdosimetry: Principles and applications, Reports of Practical Oncology & Radiotherapy (2016) [Google Scholar]
- R. Antoni et al., Microdosimetric spectra simulated with MCNP6.1 with INCL4/ABLA model for kerma and mean quality factor assessment, for neutrons between 100 keV to 19 MeV, Radiation Measurements (2019) [Google Scholar]
- Los Alamos Scientific Laboratory, Group X-6. MCNP: a General Monte Carlo Code for Neutron and Photon Transport, Dept. of Energy, Los Alamos Scientific Laboratory (1979) [Google Scholar]
- T. Ogawa et al., New algorithm for Monte Carlo particle-transport simulation to recover event-by-event kinematic correlations of reactions emitting charged particles. In Proc. Joint Int. Conf. Math. Comput., Supercomput. Nucl. Appl. Monte Carlo Method (2015) [Google Scholar]
- T. Sato et al., Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02, Journal of Nuclear Science and Technology (2018) [Google Scholar]
- Isotopes of silicon, Wikipedia - The Free Encyclopedia, [Online]. Available: https://en.wikipedia.org/wiki/Isotopes_of_. [Google Scholar]
- M. De Napoli, SiC detectors: A review on the use of silicon carbide as radiation detection material, Frontiers in Physics (2022) [Google Scholar]
- K. Shibata et al., JENDL-4.0: A New Library for Nuclear Science and Engineering, Journal of Nuclear Science and Technology, 48, pp. 1–30 (2011) [Google Scholar]
- R. V. Griffith et al., Compendium of neutron spectra and detector responses for radiation protection purpose, IAEA technical report (1990) [Google Scholar]
- O. Obraztsova et al., Comparing the Response of a SiC and a sCVD Diamond Detectors to 14-MeVNeutron Radiation, IEEE Transactions on Nuclear Science, 65 (2018) [Google Scholar]
- M. E. Wiedenbeck et al., Thin silicon solid-state detectors for energetic particle measurements, Astronomy & Astrophysics (2021) [Google Scholar]
- Q. Potiron et al., Modelling of a SiC Based Detector for the Interpretation of 14.1 MeV Neutrons Measurements, in ANIMMA2023- The 8th International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications, Lucca, Italy (2023) [Google Scholar]
- M. Hodgson et al., Neutron detection performance of silicon carbide and diamond detectors with incomplete charge collection properties, in Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 847, pp. 1–9 (2017) [CrossRef] [Google Scholar]
- P. Reuss, Cauchy’s theorem and generalization, EPJ Nuclear Sci. Technol., 4 (2018) [Google Scholar]
- K. Sedlačková et al., Properties of SiC semiconductor detector of fast neutrons investigated using MCNPX code, in 19th Internation Conference on Applied Physics of Condensed Matter (2013) [Google Scholar]
- R. Bernat et al., Response of 4H-SiC Detectors to Ionizing Particles, Crystals, 11 (2021) [Google Scholar]
- F. Pedregosa et al., Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, 12, pp. 2825–2830 (2011) [Google Scholar]
- J. F. Ziegler, SRIM-2003, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 219-220, pp. 1027–1036 (2004) [Google Scholar]
- J. M. Gomez-Ros et al., Designing an extended energy range single-sphere multidetector neutron spectrometer, Nuclear Instruments and Methods in Physics Research A (2012) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.