Open Access
Issue
EPJ Web Conf.
Volume 302, 2024
Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo (SNA + MC 2024)
Article Number 17005
Number of page(s) 10
Section Artificial Intelligence & Digital in Nuclear Applications - Quantum Computing
DOI https://doi.org/10.1051/epjconf/202430217005
Published online 15 October 2024
  1. IEC 60880, Nuclear power plants - Instrumentation and control systems important to safety - Software aspects for computer-based systems performing category A functions (2006) [Google Scholar]
  2. IEC 61513, Nuclear power plants - Instrumentation and control important to safety - General requirements for systems (2011) [Google Scholar]
  3. M. C. Marinica, et al., MiLaDy - Machine Lerning Dynamics (CEA, Saclay, 2015-2019) https://ai-atoms.github.io/milady-docs/ (visited January 2024) [Google Scholar]
  4. CEA LIST, https://list.cea.fr/en/ (visited January 2024) [Google Scholar]
  5. CEA DES ISAS, https://www.linkedin.com/company/cea-isas/ (visited January 2024) [Google Scholar]
  6. IAEA, Artificial Intelligence for Accelerating Nuclear Applications, Science and Technology (2022) [Google Scholar]
  7. ISO/IEC 22989:2022, Information technology - Artificial intelligence (2022) [Google Scholar]
  8. ISO/IEC 23053:2022, Framework for Artificial Intelligence (AI) Systems Using Machine Learning (ML) concepts and terminology (2022) [Google Scholar]
  9. ISO/IEC TR 29119-11, Software and systems engineering - Software testing - Part 11: Guidelines on the testing of AI-based systems (2020) [Google Scholar]
  10. IEC/TR 63468:2023, Nuclear facilities - instrumentation and control, and electrical power systems - artificial intelligence applications (2023) [Google Scholar]
  11. D. Doizi et al., Optical On Line Techniques for Nuclear Applications., Proceedings of ANIMMA 2011 (2011) [Google Scholar]
  12. S. Brown, R. Tauler, B. Walczak, Comprehensive Chemometrics. Chemical and Biochemical Data Analysis (Second Ed.), Elsevier (2020) [Google Scholar]
  13. T. Yoon et al., Deep learning-based denoising for fast time-resolved flame emission spectroscopy in high-pressure combustion environment, Combustion and Flame, 248 (2023) [Google Scholar]
  14. S. P. Kyathanahally et al., Deep learning approaches for detection and removal of ghosting artifacts in MR spectroscopy, Magnetic Resonance in Medicine, 80, pp. 851–863 (2018) [Google Scholar]
  15. C. S. Ho et al., Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning, Nat Commun, 10 (2019) [Google Scholar]
  16. Z. Zhao et al., ConInceDeep: A novel deep learning method for component identification of mixture based on Raman spectroscopy, Chemometrics and Intelligent Laboratory Systems, 234 (2023) [Google Scholar]
  17. W. Ng et al., The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data, SOIL, 6, p. 565–578 (2020) [Google Scholar]
  18. P. Mishra et al., Deep calibration transfer: Transferring deep learning models between infrared spectroscopy instruments, Infrared Physics & Technology, 117 (2021) [Google Scholar]
  19. R. Finotello et al., HyperPCA: A powerful tool to extract elemental maps from noisy data obtained in LIBS mapping of materials, Spectrochim. Acta Part B., 192 (2022) [Google Scholar]
  20. H. Leng et al., Raman spectroscopy and FTIR spectroscopy fusion technology combined with deep learning: A novel cancer prediction method, Spectrochim. Acta Part A., 285 (2023) [Google Scholar]
  21. R. Finotello, D. L’Hermite, C. Quéré, B. Rouge, M. M. Tamaazousti, J.-B. Sirven, Trustworthiness of Laser-Induced Breakdown Spectroscopy Predictions via Simulation-based Synthetic Data Augmentation and Multitask Learning, EPJ Web of Conferences (2023) [Google Scholar]
  22. J. Coulin, R. Guillemard, V. Gay-Bellile, C. Joly, Tightly-coupled magneto-visual- inertial fusion for long term localization in indoor environment, IEEE Robotics and Automation Letters (2021) [Google Scholar]
  23. F. Chersi, et al., AIDGE: A Framework for Deep Neural Network Development, Training and Deployment on the Edge, Proceeding of the European Conference for Edge AI (2023) [Google Scholar]
  24. J. Gawlikowski, C. R. N. Tassi et al., A survey of uncertainty in deep neural networks, arXiv preprint arXiv:2107.03342 (2021) [Google Scholar]
  25. T. Pearce, A. Brintrup et al., High-quality prediction intervals for deep learning: A distribution-free, ensembled approach, International Conference on Machine Learning (PMLR), p. 4075–4084 (2018) [Google Scholar]
  26. K. Lee, H. Lee et al., Training confidence-calibrated classifiers for detecting out-ofdistribution samples, International Conference on Learning Representations (2018) [Google Scholar]
  27. Y. Romano, E. Patterson, E. Candes, Conformalized quantile regression, in Advances in neural information processing systems, 32 (2019) [Google Scholar]
  28. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, et al., Intriguing properties of neural networks., arXiv:1312.6199 (2013) [Google Scholar]
  29. X. Ma, Y. Niu, L. Gu, Y. Wang, et al., Understanding adversarial attacks on deep learning based medical image analysis systems, Pattern Recognition (2021) [Google Scholar]
  30. C. Guo, J. Gardner, Y. You, A. G. Wilson, K. Weinberger, Simple black-box adversarial attacks., in In International Conference on Machine Learning (2019) [Google Scholar]
  31. I. Goodfellow, J. Shlens, et al., Explaining and harnessing adversarial examples., arXiv preprint arXiv:1412.6572 (2014) [Google Scholar]
  32. A. Madry, A. Makelov, et al., Towards deep learning models resistant to adversarial attacks., arXiv preprint arXiv:1706.06083 (2017) [Google Scholar]
  33. H. Gouk, E. Frank, et al., Regularisation of neural networks by enforcing lipschitz continuity, Machine Learning, 110, pp. 393–416 (2021) [Google Scholar]
  34. J. Cohen, E. Rosenfeld, et al., Certified adversarial robustness via randomized smoothing, Proceedings of the 36th International Conference on Machine Learning Research, 97 (2019) [Google Scholar]
  35. Z. Chaouai, et al., Application of adversarial learning for identification of radionuclides in gamma-ray spectra, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1033 (2022) [Google Scholar]
  36. B. Nelson, M. Barreno, et al., Exploiting machine learning to subvert your spam filter., LEET, 8, n. 1-2, pp. 16–17 (2008) [Google Scholar]
  37. M. Fredrikson, S. Jha, et al., Model inversion attacks that exploit confidence information and basic countermeasures, In Proc. The 22nd ACM SIGSAC conference on computer and communications security, pp. 1322–1333 (2015) [Google Scholar]
  38. J. Mattioli, H. Sohier, et al., An overview of key trustworthiness attributes and KPIs for trusted ML-based systems engineering, In AITA: AI Trustworthiness Assesment at AAAI (2023) [Google Scholar]
  39. T. Chen, Metamorphic testing: A simple method for alleviating the test oracle problem, In Proc. of the 10th International Workshop on Automation of Software Test. AST ‘15, IEEE Press (2015) [Google Scholar]
  40. OpenAI, GPT-4 https://openai.com/product/gpt-4, (visited Mai 2023) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.