Open Access
Issue |
EPJ Web Conf.
Volume 303, 2024
The 16th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 2023)
|
|
---|---|---|
Article Number | 02003 | |
Number of page(s) | 6 | |
Section | Low-Energy Nucleon Structure | |
DOI | https://doi.org/10.1051/epjconf/202430302003 | |
Published online | 25 September 2024 |
- Zyla, P. A. et al. Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 083C01 (2020). [Google Scholar]
- Fonvieille, H., Pasquini, B. and Sparveris, N. Virtual Compton Scattering and Nucleon Generalized Polarizabilities. Prog. Part. Nucl. Phys. 113, 103754 (2020). [Google Scholar]
- Pasquini, B. and Vanderhaeghen, M. Dispersion Theory in Electromagnetic Interactions Annu. Rev. Nucl. Part. Sci. 68, 75–103 (2018). [Google Scholar]
- Roche, J. et al. First Determination of Generalized Polarizabilities of the Proton by a Virtual Compton Scattering Experiment Phys. Rev. Lett. 85, 708–711 (2000). [Google Scholar]
- Janssens, P. et al. A new measurement of the structure functions PLL-PTT/e and PLT in virtual Compton scattering at Q2 = 0.33(GeV/c)2 Eur. Phys. J. A37, 1–8 (2008) [Google Scholar]
- Bericic, J. et al. New Insight in the Q2 Dependence of Proton Generalized Polarizabilities Phys. Rev. Lett. 123, 192302 (2019) [Google Scholar]
- Fonvieille, H. et al. Measurement of the generalized polarizabilities of the proton at intermediate Q2 Phys. Rev. C 103, 025205 (2021) [CrossRef] [Google Scholar]
- Laveissiere, G. et al. Measurement of the Generalized Polarizabilities of the Proton in Virtual Compton Scattering at Q2 = 0.92 and 1.76 GeV2 Phys. Rev. Lett. 93, 122001 (2004) [Google Scholar]
- Fonvieille, H. et al. Virtual Compton scattering and the generalized polarizabilities of the proton at Q2 = 0.92 and 1.76 GeV2 Phys. Rev. C 86, 015210 (2012) [CrossRef] [Google Scholar]
- R. Li, et al., Nature 611, 265 (2022) [CrossRef] [PubMed] [Google Scholar]
- Pasquini, B., Drechsel, D., Gorchtein, M., Metz, A., and Vanderhaeghen, M. Dispersion relation formalism for virtual Compton scattering and the generalized polarizabilities of the nucleon Phys. Rev. C 62, 052201(R) (2000). [CrossRef] [Google Scholar]
- Pasquini, B., Gorchtein, M., Drechsel, D., Metz, A. and Vanderhaeghen, M. Dispersion relation formalism for virtual Compton scattering off the proton Eur. Phys. J. A 11, 185 (2001). [CrossRef] [Google Scholar]
- Drechsel, D., Pasquini, B. and Vanderhaeghen, M. Dispersion relations in real and virtual Compton scattering Phys. Rep. 378, 99 (2003). [Google Scholar]
- Lensky, V., Pascalutsa, V. and Vanderhaeghen, M. Generalized polarizabilities of the nucleon in baryon chiral perturbation theory Eur. Phys. J. C 77, 119 (2017). [CrossRef] [Google Scholar]
- Hemmert, T. R., Holstein, B., Knochlein G., Scherer S., Virtual Compton scattering off the nucleon in chiral perturbation theory Phys. Rev. D 55, 2630 (1997). [CrossRef] [Google Scholar]
- Hemmert, T. R., Holstein, B., Knochlein, G., Scherer, S. Generalized polarizabilities and the chiral structure of the nucleon Phys. Rev. Lett. 79, 22 (1997). [Google Scholar]
- Hemmert, T. R., Holstein, B., Knochlein, G., Drechsel, D. Generalized polarizabilities of the nucleon in chiral effective theories Phys. Rev. D 62, 014013 (2000). [CrossRef] [Google Scholar]
- Kao, C. W., Vanderhaeghen, M. Generalized spin polarizabilities of the nucleon in heavy baryon chiral perturbation theory at next-to-leading order Phys. Rev. Lett. 89, 272002 (2002). [Google Scholar]
- Kao, C. W., Pasquini, B., Vanderhaeghen, M. New predictions for generalized spin polarizabilities from heavy baryon chiral perturbation theory Phys. Rev. D 92, 119906 (2015). [CrossRef] [Google Scholar]
- Metz, A., Drechsel, D. Generalized polarizabilities of the nucleon studied in the linear sigma model Z. Phys. A 356, 351 (1996). [CrossRef] [Google Scholar]
- Metz, A., Drechsel, D. Generalized polarizabilities of the nucleon studied in the linear sigma model. 2 Z. Phys. A 359, 165 (1997). [CrossRef] [Google Scholar]
- Korchin, A. and Scholten, O. Nucleon polarizabilities in virtual Compton scattering Phys. Rev. C 58, 1098 (1998) [CrossRef] [Google Scholar]
- Pasquini, B. and Salme, G. Nucleon generalized polarizabilities within a relativistic constituent quark model Phys. Rev. C 57, 2589 (1998). [CrossRef] [Google Scholar]
- Liu, G. Q., Thomas, A. W., Guichon, P. A. M. Virtual Compton scattering from the proton and the properties of nucleon excited states Aust. J. Phys. 49, 905 (1996). [Google Scholar]
- Pasquini, B., Scherer, S. and Drechsel, D. Generalized polarizabilities of the proton in a constituent quark model revisited Phys. Rev. C 63, 025205 (2001). [CrossRef] [Google Scholar]
- Gorchtein, M., Lorce, C., Pasquini, B., Vanderhaeghen, M. Light-front interpretation of Proton Generalized Polarizabilities Phys. Rev. Lett. 104, 112001 (2010). [Google Scholar]
- Mornacchi, E. et al. Measurement of Compton scattering at MAMI for the extraction of the electric and magnetic polarizabilities of the proton arXiv:2110.15691, (2010) [Google Scholar]
- Bourgeois, P. et al. Measurements of the generalized electric and magnetic polarizabilities of the proton at low Q2 using the VCS reaction Phys. Rev. Lett. 97, 212001 (2006) [Google Scholar]
- Bourgeois, P. et al. Measurements of the generalized electric and magnetic polarizabilities of the proton at low Q2 using the virtual Compton scattering reaction Phys. Rev. C 84, 035206 (2011) [CrossRef] [Google Scholar]
- Blomberg, A. et al. Virtual Compton Scattering measurements in the nucleon resonance region. Eur. Phys. J. A 55, 182 (2019). [CrossRef] [Google Scholar]
- Pohl, R. et al. The size of the proton Nature 466, 213–216 (2010) [CrossRef] [PubMed] [Google Scholar]
- Antognini, A. et al. Proton structure from the mea-surement of 2S-2P transition frequencies of muonic hydrogen Science 339, 417–420 (2013) [CrossRef] [PubMed] [Google Scholar]
- Xiong, W. et al. A small proton charge radius from an electron-proton scattering experiment Nature 575, 147–150 (2019) [CrossRef] [PubMed] [Google Scholar]
- Fleurbaey, H. et al. New measurement of the 1S-3S transition frequency of hydrogen: contribution to the proton charge radius puzzle Phys. Rev. Lett. 120, 182001 (2018) [Google Scholar]
- Bezginov, N. et al. A measurement of the atomic hydrogen Lamb shift and the proton charge radius Science 365, 1007 (2019) [CrossRef] [PubMed] [Google Scholar]
- Bernauer, J. C. et al. High-Precision Determinatio nof the Electric and Magnetic Form Factors of the Proton Phys. Rev. Lett. 105, 242001 (2010) [Google Scholar]
- Atac, H. et al. Charge radii of the nucleon from its flavor dependent Dirac form factors Eur. Phys. J. A 57, 65 (2021) [CrossRef] [Google Scholar]
- Grinin, A. et al. Two-photon frequency comb spectroscopy of atomic hydrogen Science 370, 1061–1066 (2020) [CrossRef] [PubMed] [Google Scholar]
- Atac, H. et al. Measurement of the neutron charge radius and the role of its constituents Nature Commun. 12, 1759 (2021) [Google Scholar]
- H. Atac et al., arXiv:2308.07197 [Google Scholar]
- B. Pasquini and M. Vanderhaeghen, Eur. Phys. J. A 57 (2021) 11, 316 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.