Open Access
Issue
EPJ Web Conf.
Volume 304, 2024
HINPw7 – 7th International Workshop of the Hellenic Institute of Nuclear Physics on Nuclear Structure, Astrophysics and Reaction Dynamics
Article Number 01017
Number of page(s) 4
Section Reaction Dynamics
DOI https://doi.org/10.1051/epjconf/202430401017
Published online 08 October 2024
  1. N. Ito et al., Large solid angle spectrometer for the measurements of differential (n,charged-particle) cross sections, Nucl. Instrum. Methods A 337, 474 (1994) [CrossRef] [Google Scholar]
  2. M. Baba et al., Differential α-production cross sections of iron and nickel for 4.3 to 14.1 MeV neutrons, J. Nucl. Sci. Technol. 31 (7), 745 (1994) [CrossRef] [Google Scholar]
  3. T. Sanami et al., Measurement of double-differential neutron-induced α-particle emission cross-sections of 58Ni and f natNi, JAERI Conferences Proceedings 008 (96) 231 (1995) [Google Scholar]
  4. K. Kondo et al., New approach to measure doubledifferential charged-particle emission cross sections of several materials for a fusion reactor. Fusion Eng. Des. 81, 1527 (2006) [CrossRef] [Google Scholar]
  5. K. Ehrlich, The development of structural materials for fusion reactors. Philos. Trans. R. Soc., A 357, 595 (2009) [Google Scholar]
  6. B. Lalremruata et al., Double differential cross sections of (n,α) reactions in aluminium and nickel at 14.77 MeV neutrons. Nucl. Phys. A 821, 23 (2009) [CrossRef] [Google Scholar]
  7. P.M. Prajapati et al., Double-differential cross section of 56Fe(n, alpha)53Cr reaction at 14 MeV neutrons. Proceedings of the DAE Symposium on Nuclear Physics 58, 456 (2013) [Google Scholar]
  8. I.H. Sarpün, Double differential alpha, proton and deuteron emission cross section calculations for the structural fusion materials 46,48Ti. J. Fusion Energ. 34, 592 (2015) [CrossRef] [Google Scholar]
  9. B. Demir et al., Double differential cross section and stopping power calculations of light charged particle emission for the structural fusion materials 50,52Cr. J. Fusion Energ. 34, 808 (2015) [CrossRef] [Google Scholar]
  10. E.E. Bloom et al., Low activation materials for fusion applications. J. Nucl. Mater. 122 (1-3), 17 (1984) [CrossRef] [Google Scholar]
  11. M. Victoria et al., Structural materials for fusion reactors. Nucl. Fusion 41 (8), 1047 (2001) [CrossRef] [Google Scholar]
  12. P.M. Raole, S.P. Deshpande, DEMO Team, Structural materials for fusion reactors. T Indian I Metals 62 (2), 105 (2009) [CrossRef] [Google Scholar]
  13. R.J. Kurtz et al., Recent progress toward development of reduced activation ferritic/martensitic steels for fusion structural applications. J. Nucl. Mater. 386-388, 411 (2009) [CrossRef] [Google Scholar]
  14. D.R. Harries et al., Evaluation of reduced activation options for fusion materials development. J. Nucl. Mater. 191–194, 92 (1992) [CrossRef] [Google Scholar]
  15. A. Möslang et al., Innovative materials for energy technology. Int. J. Mater. Res. 99, 1045 (2008) [CrossRef] [Google Scholar]
  16. S.J. Zinkle, J.T. Busby, Structural materials for fission & fusion energy. Mater. Today 12 12 (2009) [CrossRef] [Google Scholar]
  17. M. Zucchetti, M. Merola, Low activation properties of novel Cr-based materials for fusion reactors. J. Nucl. Mater. 233–237 1486 (1996) [CrossRef] [Google Scholar]
  18. G.F. Thomas, S.J. Brereton, Enhanced tritium production for fusion reactors via 3He(n,p)3H in the heavy water moderator of a CANDU reactor J. Fusion Energ. 4 27 (1985) [CrossRef] [Google Scholar]
  19. D.W. Kneff et al., Helium Production in Pure Elements, Isotopes, and Alloy Steels by 14.8-MeV Neutrons. Nucl. Sci. Eng. 92 491 (1986) [CrossRef] [Google Scholar]
  20. A. Kumar et al., Measurements and analysis of transmitted spectra from LOTUS fission-suppressed hybrid blanket driven by DT neutrons. J. Fusion Energ. 8, 107 (1989) [CrossRef] [Google Scholar]
  21. A.A. Cowley et al., Preequilibrium proton emission induced by 80 and 120 MeV protons incident on 90Zr. Phys. Rev. C 43 678 (1991) [CrossRef] [PubMed] [Google Scholar]
  22. I.M. Kokoo et al., Measurements of Double Differential Cross Sections of Charged-Particle Emission Reactions for Several Structural Elements of Fusion Power Reactors by 14.1-MeV Incident Neutrons. Nucl. Sci. Eng. 132 16 (1999) [CrossRef] [Google Scholar]
  23. Y. Terada et al., Measurements of double differential cross sections for charged particle emission reactions by 14.1 MeV incident neutrons. J. Nucl. Sci. Technol. 39 (2), 413 (2002) [CrossRef] [Google Scholar]
  24. Y. Han, The double differential cross section for n+U238 reaction. Nucl. Phys. A 780 34 (2006) [CrossRef] [Google Scholar]
  25. Z. Zhang et al., Double differential cross sections of light charged particle emission in neutron induced reactions on 54,56,57,58Fe. Ann. Nucl. Energy 37 130 (2010) [CrossRef] [Google Scholar]
  26. J.-F. Duan et al., Theoretical Analysis of Neutron Double-Differential Cross Sections of n+9Be Reactions. Commun. Theor. Phys. 54 129 (2010) [CrossRef] [Google Scholar]
  27. A. Aydin et al., Calculations of Double Differential Deuteron Emission Cross Sections at 62 MeV Proton Induced Reactions. J. Fusion Energ. 32 378 (2013) [CrossRef] [Google Scholar]
  28. A. Aydin et al., Calculations of double differential triton emission cross sections at 62-MeV proton induced reactions. Phys. Atom. Nucl. 77 (3), 321 (2014) [CrossRef] [Google Scholar]
  29. ˙I.H. Sarpün et al., Calculation of double differential cross sections for proton impact alpha emission at 62 MeV. J. Nucl. Sci. 1 (1), 1 (2014) [CrossRef] [Google Scholar]
  30. A. Koning et al., TALYS-1.96/2.0 Simulation of nuclear reactions (2021) [Google Scholar]
  31. EXFOR/CSISRS, IAEA [Google Scholar]
  32. A.J. Koning, J.P. Delaroche, Local and global nucleon optical models from 1 keV to 200 MeV. Nucl. Phys. A 713 231 (2003) [NASA ADS] [CrossRef] [Google Scholar]
  33. C. Kalbach, Two-component exciton model: Basic formalism away from shell closures. Phys. Rev. C 330 818 (1986) [CrossRef] [PubMed] [Google Scholar]
  34. W. Hauser, H. Feshbach, The inelastic scattering of neutrons. Phys. Rev. 87 366 (1952) [CrossRef] [Google Scholar]
  35. J. Raynal, Notes on ECIS84, CEA Saclay Report No. CEA-N2772 (1994) [Google Scholar]
  36. L. Colli et al., Angular Distributions of Protons Emitted in 24Mg(n,p) and 32S(n,p) Reactions at 14 MeV, Nuovo Cimento 17 I5, 634 (1960) [CrossRef] [Google Scholar]
  37. K. Debertin et al., The Reactions Ni-58(N,P)Co-58 And Al-27(N,P)Mg-27 At Various Neutron Energies, Inst. fuer Kernphysik, Frankfurt Reports 11 (1965) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.