Open Access
Issue |
EPJ Web Conf.
Volume 305, 2024
6th International Conference on Applications of Optics and Photonics (AOP2024)
|
|
---|---|---|
Article Number | 00016 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/epjconf/202430500016 | |
Published online | 15 October 2024 |
- Khatib, M., & Haick, H. (2022). Sensors for volatile organic compounds. ACS nano, 16(5), 7080–7115. 10.1021/acsnano.1c10827 [CrossRef] [PubMed] [Google Scholar]
- Xie, Y., Lyu, S., Zhang, Y., & Cai, C. (2022). Adsorption and degradation of volatile organic compounds by metal–organic frameworks (MOFs): a review. Materials, 15(21), 7727. 10.3390/ma15217727 [CrossRef] [PubMed] [Google Scholar]
- Khan, A., Kanwal, H., Bibi, S., Mushtaq, S., Khan, A., Khan, Y. H., & Mallhi, T. H. (2021). Volatile organic compounds and neurological disorders: from exposure to preventive interventions. In Environmental contaminants and neurological disorders (pp. 201–230). Cham: Springer International Publishing. 10.1007/9783-030-66376-6_10 [Google Scholar]
- Wei, C., Pan, Y., Zhang, W., He, Q., Chen, Z., & Zhang, Y. (2023). Comprehensive analysis between volatile organic compound (VOC) exposure and female sex hormones: A cross-sectional study from NHANES 2013–2016. Environmental Science and Pollution Research, 30(42), 95828–95839. 10.1007/s11356-023-29125-0 [CrossRef] [Google Scholar]
- Pathak, A. K., & Viphavakit, C. (2022). A review on all-optical fiber-based VOC sensors: Heading towards the development of promising technology. Sensors and Actuators A: Physical, 338, 113455. 10.1016/j.sna.2022.113455 [CrossRef] [Google Scholar]
- Qu, X., Hu, Y., Xu, C., Li, Y., Zhang, L., Huang, Q., ... & Fu, Y. (2024). Optical sensors of volatile organic compounds for non-invasive diagnosis of diseases. Chemical Engineering Journal, 149804. 10.1016/j.cej.2024.149804 [CrossRef] [Google Scholar]
- Sudheer, V. R., Kumar, S. S., & Sankararaman, S. (2020). Ultrahigh sensitivity surface plasmon resonance–based fiber-optic sensors using metalgraphene layers with Ti 3 C 2 T x MXene overlayers. Plasmonics, 15, 457–466 10.1007/s11468-019-01035-3 [CrossRef] [Google Scholar]
- He, C., Liu, L., Korposh, S., Correia, R., & Morgan, S. P. (2021). Volatile organic compound vapour measurements using a localised surface plasmon resonance optical fibre sensor decorated with a metalorganic framework. Sensors, 21(4), 1420. 10.3390/s21041420 [CrossRef] [PubMed] [Google Scholar]
- Gryga, M., Ciprian, D., & Hlubina, P. (2020). Sensing concept based on Bloch surface waves and wavelength interrogation. Optics Letters, 45(5), 1096–1099. 10.1364/OL.387593 [CrossRef] [PubMed] [Google Scholar]
- Veeraghattam, B., Mukherjee, S., Guha, P. K., & Bhaktha, B. S. (2024). Sensing of volatile organic compounds using one-dimensional photonic crystal Bloch surface waves and internal optical modes. Optics & Laser Technology, 175, 110818. 10.1016/j.optlastec.2024.110818 [CrossRef] [Google Scholar]
- Gao, L., Kou, D., Ma, W., & Zhang, S. (2023). Biomimetic Metal–Organic Framework-Based Photonic Crystal Sensor for Highly Sensitive Visual Detection and Effective Discrimination of Benzene Vapor. ACS Applied Materials & Interfaces, 15(25), 30606–30618. 10.1021/acsami.3c03673 [CrossRef] [PubMed] [Google Scholar]
- Saruhan, B., Lontio Fomekong, R., & Nahirniak, S. (2021). Influences of semiconductor metal oxide properties on gas sensing characteristics. Frontiers in Sensors, 2, 657931. 10.3389/fsens.2021.657931 [CrossRef] [Google Scholar]
- Franco, M. A., Conti, P. P., Andre, R. S., & Correa, D. S. (2022). A review on chemiresistive ZnO gas sensors. Sensors and Actuators Reports, 4, 100100. 10.1016/j.snr.2022.100100 [CrossRef] [Google Scholar]
- Wang, C. N., Li, Y. L., Gong, F. L., Zhang, Y. H., Fang, S. M., & Zhang, H. L. (2020). Advances in doped ZnO nanostructures for gas sensor. The Chemical Record, 20(12), 1553–1567. 10.1002/tcr.202000088 [CrossRef] [PubMed] [Google Scholar]
- Kang, Y., Yu, F., Zhang, L., Wang, W., Chen, L., & Li, Y. (2021). Review of ZnO-based nanomaterials in gas sensors. Solid State Ionics, 360, 115544. 10.1016/j.ssi.2020.115544 [CrossRef] [Google Scholar]
- NIST 2013, Ethanol, NIST Chemistry WebBook, SRD 69, accessed 31 July 2024, <https://webbook.nist.gov/cgi/cbook.cgi?ID=C64175&Mask=4&Type=ANTOINE&Plot=on#Top>. [Google Scholar]
- Mougkogiannis, P., Turner, M., & Persaud, K. (2020). Amine detection using organic field effect transistor gas sensors. Sensors, 21(1), 13. 10.3390/s21010013 [CrossRef] [PubMed] [Google Scholar]
- Yesudasu, V., Pradhan, H. S., & Pandya, R. J. (2021). Recent progress in surface plasmon resonance based sensors: A comprehensive review. Heliyon, 7(3). 10.1016/j.heliyon2021.e06321 [CrossRef] [PubMed] [Google Scholar]
- Gryga, M., Ciprian, D., & Hlubina, P. (2020). Bloch surface wave resonance based sensors as an alternative to surface plasmon resonance sensors. Sensors, 20(18), 5119 10.3390/s20185119 [CrossRef] [PubMed] [Google Scholar]
- Markos, P., & Soukoulis, C. M. (2008). Wave propagation: from electrons to photonic crystals and left-handed materials. Princeton University Press. 10.1515/9781400835676 [CrossRef] [Google Scholar]
- Johnson, P. B., & Christy, R. W. (1974). Optical constants of transition metals: Ti, v, cr, mn, fe, co, ni, and pd. Physical review B, 9(12), 5056. 10.1103/PhysRevB.9.5056 [CrossRef] [Google Scholar]
- Johnson, P. B., & Christy, R. W. (1972). Optical constants of the noble metals. Physical review B, 6(12), 4370. 10.1103/PhysRevB.6.4370 [CrossRef] [Google Scholar]
- Malitson, I. H. (1965). Interspecimen comparison of the refractive index of fused silica. Josa, 55(10), 1205–1209. 10.1364/JOSA.55.001205 [CrossRef] [Google Scholar]
- DeVore, J. R. (1951). Refractive indices of rutile and sphalerite. JOSA, 41(6), 416–419. 10.1364/JOSA.41.000416 [CrossRef] [Google Scholar]
- Bond, W. L. (1965). Measurement of the refractive indices of several crystals. Journal of Applied Physics, 36(5), 1674–1677. 10.1063/1.1703106 [CrossRef] [Google Scholar]
- Coelho, L., Viegas, D., Santos, J. L., & De Almeida, J. M. M. M. (2016). Characterization of zinc oxide coated optical fiber long period gratings with improved refractive index sensing properties. Sensors and Actuators B: Chemical, 223, 45–51. 10.1016/j.snb.2015.09.061 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.