Open Access
Issue |
EPJ Web Conf.
Volume 310, 2024
Lecture Notes – Joint EPS-SIF International School on Energy 2023 – Course 7: Global Challenges for Energy Sustainability
|
|
---|---|---|
Article Number | 00015 | |
Number of page(s) | 20 | |
DOI | https://doi.org/10.1051/epjconf/202431000015 | |
Published online | 06 November 2024 |
- Puttgen H., MacGregor P. and Lambert F., “Distributed generation: Semantic hype or the dawn of a new era?,” IEEE Power Energy Mag., 1 (2003) 22. [CrossRef] [Google Scholar]
- Massoud Amin S. and Wollenberg B., “Toward a smart grid: power delivery for the 21st century,” IEEE Power Energy Mag., 3 (2005) 34. [CrossRef] [Google Scholar]
- Carrasco J., Franquelo L., Bialasiewicz J., Galvan E., PortilloGuisado R., Prats M., Leon J. and Moreno-Alfonso N., “Power-electronic systems for the grid integration of renewable energy sources: A survey,” IEEE Trans. Indust. Electron., 53 (2006) 1002. [CrossRef] [Google Scholar]
- Guerrero J. M., Loh P. C., Lee T.-L. and Chandorkar M., “Advanced control architectures for intelligent microgrids—part ii: Power quality, energy storage, and AC/DC microgrids,” IEEE Trans. Indust. Electron., 60 (2013) 1263. [CrossRef] [Google Scholar]
- Machado J. E., Ahmed S., Scherpen J. M. A. and Cucuzzella M., “Robust, distributed and optimal control of smart grids,” EPJ Web of Conferences, 268 (2022) 00016. [CrossRef] [EDP Sciences] [Google Scholar]
- Lasseter R. and Paigi P., “Microgrid: a conceptual solution,” in: 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), Vol. 6, pp. 4285–4290, (2004). [Google Scholar]
- Karimi H., Davison E. J. and Iravani R., “Multivariable servomechanism controller for autonomous operation of a distributed generation unit: Design and performance evaluation,” IEEE Trans. Power Syst., 25 (2010) 853. [CrossRef] [Google Scholar]
- Parisio A., Rikos E. and Glielmo L., “A model predictive control approach to microgrid operation optimization,” IEEE Trans. Control Syst. Technol., 22 (2014) 1813. [CrossRef] [Google Scholar]
- Cucuzzella M., Incremona G. P. and Ferrara A., “Decentralized sliding mode control of islanded AC microgrids with arbitrary topology,” IEEE Trans. Indust. Electron., 64 (2017) 6706. [CrossRef] [Google Scholar]
- Trip S., Cucuzzella M., De Persis C., van der Schaft A. and Ferrara A., “Passivity-based design of sliding modes for optimal load frequency control,” IEEE Trans. Control Syst. Technol., 27 (2019) 1893. [CrossRef] [Google Scholar]
- Trip S., Cucuzzella M., De Persis C., Ferrara A. and Scherpen J. M. A., “Robust load frequency control of nonlinear power networks,” Int. J. Control, 93 (2020) 346. [CrossRef] [Google Scholar]
- Cucuzzella M., Trip S., Ferrara A. and Scherpen J., “Cooperative voltage control in AC microgrids,” in: 2018 IEEE Conference on Decision and Control (CDC), pp. 6723–6728, (2018). [Google Scholar]
- Silani A., Cucuzzella M., Scherpen J. M. A. and Yazdanpanah M. J., “Output regulation for load frequency control,” IEEE Trans. Control Syst. Technol., 30 (2022) 1130. [CrossRef] [Google Scholar]
- Feng S., Cucuzzella M., Bouman T., Steg L. and Scherpen J. M. A., “An integrated human-cyber-physical framework for control of microgrids,” IEEE Trans. Smart Grid, 14 (2023) 3388. [CrossRef] [Google Scholar]
- Justo J. J., Mwasilu F., Lee J. and Jung J.-W., “AC-microgrids versus DC-microgrids with distributed energy resources: A review,” Renewable Sustainable Energy Rev., 24 (2013) 387. [CrossRef] [Google Scholar]
- Flourentzou N., Agelidis V. G. and Demetriades G. D., “VSC-based HVDC power transmission systems: An overview,” IEEE Trans. Power Electron., 24 (2009) 592. [CrossRef] [Google Scholar]
- Jeltsema D. and Scherpen J., “Tuning of passivity-preserving controllers for switchedmode power converters,” IEEE Trans. Automatic Control, 49 (2004) 1333. [CrossRef] [Google Scholar]
- Escobar G., van der Schaft A. J. and Ortega R., “A Hamiltonian viewpoint in the modeling of switching power converters,” Automatica, 35 (1999) 445. [CrossRef] [Google Scholar]
- Kosaraju K. C., Cucuzzella M., Scherpen J. M. A. and Pasumarthy R., “Differentiation and passivity for control of Brayton-Moser systems,” IEEE Trans. Automatic Control, 66 (2021) 1087. [CrossRef] [Google Scholar]
- Ferguson J., Cucuzzella M. and Scherpen J. M. A., “Increasing the region of attraction in DC microgrids,” Automatica, 151 (2023) 110883. [CrossRef] [Google Scholar]
- Zhao J. and Do¨rfler F., “Distributed control and optimization in DC microgrids,” Automatica, 61 (2015) 18. [CrossRef] [Google Scholar]
- Dragicˇevic´ T., Lu X., Vasquez J. C. and Guerrero J. M., “DC microgrids—part i: A review of control strategies and stabilization techniques,” IEEE Trans. Power Electron., 31 (2016) 4876. [Google Scholar]
- Cucuzzella M., Rosti S., Cavallo A. and Ferrara A., “Decentralized sliding mode voltage control in DC microgrids,” in: 2017 American Control Conference (ACC), pp. 3445–3450, (2017). [Google Scholar]
- Cucuzzella M., Lazzari R., Trip S., Rosti S., Sandroni C. and Ferrara A., “Sliding mode voltage control of boost converters in DC microgrids,” Control Engin. Practice, 73 (2018) 161. [CrossRef] [Google Scholar]
- Cucuzzella M., Lazzari R., Kawano Y., Kosaraju K. C. and Scherpen J. M. A., “Robust passivity-based control of boost converters in DC microgrids,” in: 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 8435–8440, (2019). [Google Scholar]
- Ferguson J., Cucuzzella M. and Scherpen J. M. A., “Exponential stability and local iss for DC networks,” IEEE Control Syst. Lett., 5 (2021) 893. [CrossRef] [Google Scholar]
- Silani A., Cucuzzella M., Scherpen J. M. A. and Yazdanpanah M. J., “Output regulation for voltage control in DC networks with time-varying loads,” IEEE Control Syst. Lett., 5 (2021) 797. [CrossRef] [Google Scholar]
- Silani A., Cucuzzella M., Scherpen J. M. A. and Yazdanpanah M. J., “Robust output regulation for voltage control in DC networks with time-varying loads,” Automatica, 135 (2022) 109997. [CrossRef] [Google Scholar]
- Cucuzzella M., Kosaraju K. C. and Scherpen J. M. A., “Voltage control of DC microgrids: Robustness for unknown ZIP-loads,” IEEE Control Syst. Lett., 7 (2023) 139. [CrossRef] [Google Scholar]
- Fu Z., Cenedese C., Cucuzzella M., Kawano Y., Yu W. and Scherpen J. M. A., “Novel control approaches based on projection dynamics,” IEEE Control Syst. Lett., 7 (2023) 2179. [CrossRef] [Google Scholar]
- Kawano Y., Moreschini A. and Cucuzzella M., “Krasovskii passivity for sampled-data stabilization and output consensus”, preprint arXiv (2023). [Google Scholar]
- Monfared M. N., Kawano Y. and Cucuzzella M., “Voltage control of boost converters: Feasibility guarantees,” IFAC-PapersOnLine, 56 (2023) 803, 22nd IFAC World Congress. [CrossRef] [Google Scholar]
- Malan A. J., Ferguson J., Cucuzzella M., Scherpen J. M. A. and Hohmann S., “Passivation of clustered DC microgrids with non-monotone loads”, preprint arXiv (2024). [Google Scholar]
- Anand S., Fernandes B. G. and Guerrero J., “Distributed control to ensure proportional load sharing and improve voltage regulation in low-voltage DC microgrids,” IEEE Trans. Power Electron., 28 (2013) 1900. [CrossRef] [Google Scholar]
- Nasirian V., Davoudi A., Lewis F. L. and Guerrero J. M., “Distributed adaptive droop control for DC distribution systems,” IEEE Trans. Energy Conversion, 29 (2014) 944. [CrossRef] [Google Scholar]
- Trip S., Han R., Cucuzzella M., Cheng X., Scherpen J. and Guerrero J., “Distributed averaging control for voltage regulation and current sharing in DC microgrids: Modelling and experimental validation,” IFAC-PapersOnLine, 51 (2018) 242, 7th IFAC Workshop on Distributed Estimation and Control in Networked Systems, NECSYS 2018. [CrossRef] [Google Scholar]
- Cucuzzella M., Trip S. and Scherpen J., “A consensus-based controller for DC power networks,” IFAC-PapersOnLine, 51 (2018) 205, 5th IFAC Conference on Analysis and Control of Chaotic Systems CHAOS 2018. [CrossRef] [Google Scholar]
- Zonetti D., Ortega R. and Schiffer J., “A tool for stability and power-sharing analysis of a generalized class of droop controllers for high-voltage direct-current transmission systems,” IEEE Trans. Control Network Syst., 5 (2018) 1110. [CrossRef] [Google Scholar]
- Persis C. D., Weitenberg E. R. and Do¨rfler F., “A power consensus algorithm for DC microgrids,” Automatica, 89 (2018) 364. [CrossRef] [Google Scholar]
- Cucuzzella M., Trip S., De Persis C., Cheng X., Ferrara A. and van der Schaft A., “A robust consensus algorithm for current sharing and voltage regulation in DC microgrids,” IEEE Trans. Control Syst. Technol., 27 (2019) 1583. [CrossRef] [Google Scholar]
- Trip S., Cucuzzella M., Cheng X. and Scherpen J., “Distributed averaging control for voltage regulation and current sharing in DC microgrids,” IEEE Control Syst. Lett., 3 (2019) 174. [CrossRef] [Google Scholar]
- Cucuzzella M., Kosaraju K. C. and Scherpen J. M. A., “Distributed passivity-based control of DC microgrids,” in: 2019 American Control Conference (ACC), pp. 652–657, (2019). [Google Scholar]
- Tucci M., Meng L., Guerrero J. M. and Ferrari-Trecate G., “Stable current sharing and voltage balancing in DC microgrids: A consensus-based secondary control layer,” Automatica, 95 (2018) 1. [CrossRef] [Google Scholar]
- Sahoo S. and Mishra S., “A distributed finite-time secondary average voltage regulation and current sharing controller for DC microgrids,” IEEE Trans. Smart Grid, 10 (2019) 282. [CrossRef] [Google Scholar]
- Prabhakaran P., Goyal Y. and Agarwal V., “A novel communication-based average voltage regulation scheme for a droop controlled DC microgrid,” IEEE Trans. Smart Grid, 10 (2019) 1250. [CrossRef] [Google Scholar]
- Kawano Y., Cucuzzella M., Feng S. and Scherpen J. M., “Krasovskii and shifted passivity based output consensus,” Automatica, 155 (2023) 111167. [CrossRef] [Google Scholar]
- Kawano Y., Cucuzzella M. and Scherpen J. M. A., “Krasovskii and shifted passivity approaches to mixed input/output consensus,” IEEE Control Syst. Lett., 7 (2023) 1951. [CrossRef] [Google Scholar]
- Nasirian V., Moayedi S., Davoudi A. and Lewis F. L., “Distributed cooperative control of DC microgrids,” IEEE Trans. Power Electron., 30 (2015) 2288. [CrossRef] [Google Scholar]
- Sadabadi M. S., Shafiee Q. and Karimi A., “Plug-and-play robust voltage control of DC microgrids,” IEEE Trans. Smart Grid, 9 (2018) 6886. [CrossRef] [Google Scholar]
- Strehle F., Pfeifer M., Malan A. J., Krebs S. and Hohmann S., “A scalable porthamiltonian approach to plug-and-play voltage stabilization in DC microgrids,” in: 2020 IEEE Conference on Control Technology and Applications (CCTA), pp. 787–794, (2020). [Google Scholar]
- Monshizadeh P., Machado J. E., Ortega R. and van der Schaft A., “Powercontrolled hamiltonian systems: Application to electrical systems with constant power loads,” Automatica, 109 (2019) 108527. [CrossRef] [Google Scholar]
- Machado J. E., Ortega R., Astolfi A., Arocas-Pe´rez J., Pyrkin A., Bobtsov A. A. and Grin˜o´ R., “An adaptive observer-based controller design for active damping of a DC network with a constant power load,” IEEE Trans. Control Syst. Technol., 29 (2021) 2312. [CrossRef] [Google Scholar]
- Dashkovskiy S. N. and Ru¨ffer B. S., “Local iss of large-scale interconnections and estimates for stability regions,” Syst. Control Lett., 59 (2010) 241. [CrossRef] [Google Scholar]
- Machado J. E., Rinaldi G., Cucuzzella M., Menon P. P., Scherpen J. M. and Ferrara A., “Online parameters estimation schemes to enhance control performance in DC microgrids,” Eur. J. Control, 74 (2023) 100860. [CrossRef] [Google Scholar]
- Kosaraju K. C., Cucuzzella M. and Scherpen J. M. A., “Distributed control of DC microgrids using primal-dual dynamics,” in: 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 6215–6220, (2019). [Google Scholar]
- Cucuzzella M., Bouman T., Kosaraju K. C., Schuitema G., Lemmen N. H., Johnson-Zawadzki S., Fischione C., Steg L. and Scherpen J. M. A., “Distributed control of DC grids: Integrating prosumers’ motives,” IEEE Trans. Power Systems, 37 (2022) 3299. [CrossRef] [Google Scholar]
- Fu Z., Cucuzzella M., Cenedese C., Yu W. and Scherpen J. M. A., “A distributed control framework for the optimal operation of DC microgrids,” in: 2022 IEEE 61st Conference on Decision and Control (CDC), pp. 4585–4590, (2022). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.