Open Access
Issue |
EPJ Web Conf.
Volume 311, 2024
The Fifth International Workshop on State of the Art in Nuclear Cluster Physics (SOTANCP5)
|
|
---|---|---|
Article Number | 00007 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/epjconf/202431100007 | |
Published online | 28 October 2024 |
- A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke, Alpha cluster condensation in 12c and 16o, Phys. Rev. Lett. 87, 192501 (2001). 10.1103/PhysRevLett.87.192501 [CrossRef] [PubMed] [Google Scholar]
- H. Morinaga, Interpretation of some of the excited states of 4n self-conjugate nuclei, Phys. Rev. 101, 254 (1956). 10.1103/PhysRev.101.254 [CrossRef] [Google Scholar]
- B. Gaul, Affirming the Consequent (John Wiley & Sons, Ltd, 2018), chap. 2, pp. 42–45, ISBN 9781119165811, https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119165811.ch2 [Google Scholar]
- Y. Giomataris, P. Rebourgeard, J. Robert, G. Charpak, Micromegas: a high-granularity position-sensitive gaseous detector for high particleflux environments, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 376, 29 (1996). https://doi.org/10.1016/0168-9002(96)00175-1 [CrossRef] [Google Scholar]
- M. Cortesi, J. Yurkon, A. Stolz, Operation of a thgem-based detector in low-pressure helium, Journal of Instrumentation 10, P02012 (2015). 10.1088/1748-0221/10/02/P02012 [CrossRef] [Google Scholar]
- E. Koshchiy, G. Rogachev, E. Pollacco, S. Ahn, E. Uberseder, J. Hooker, J. Bishop, E. Aboud, M. Barbui, V. Goldberg et al., Texas active target (texat) detector for experiments with rare isotope beams, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 957, 163398 (2020). https://doi.org/10.1016/j.nima.2020.163398 [Google Scholar]
- E. Epelbaum, H. Krebs, T.A. Lähde, D. Lee, U.G. Meißner, Structure and rotations of the hoyle state, Phys. Rev. Lett. 109, 252501 (2012). 10.1103/Phys-RevLett.109.252501 [CrossRef] [PubMed] [Google Scholar]
- D.J. Marín-Lámbarri, R. Bijker, M. Freer, M. Gai, Tz. Kokalova, D.J. Parker, C. Wheldon, Evidence for triangular D3h symmetry in 12C, Phys. Rev. Lett. 113, 012502 (2014). 10.1103/PhysRevLett.113.012502 [CrossRef] [PubMed] [Google Scholar]
- D.N.F. Dunbar, R.E. Pixley, W.A. Wenzel, W. Whaling, The 7.68-mev state in c12, Phys. Rev. 92, 649 (1953). 10.1103/PhysRev.92.649 [CrossRef] [Google Scholar]
- Tz. Kokalova, N. Itagaki, W. von Oertzen, C. Wheldon, Signatures for multi-α-condensed states, Phys. Rev. Lett. 96, 192502 (2006). 10.1103/Phys-RevLett.96.192502 [CrossRef] [PubMed] [Google Scholar]
- J. Refsgaard, H. Fynbo, O. Kirsebom, K. Riisager, Three-body effects in the hoyle-state decay, Physics Letters B 779, 414 (2018). https://doi.org/10.1016/j.physletb.2018.02.031 [CrossRef] [Google Scholar]
- R. Smith, J. Bishop, J. Hirst, Tz. Kokalova, C. Wheldon, The hoyle family: The search for alphacondensate states in light nuclei, Few-Body Systems 61, 14 (2020). 10.1007/s00601-020-1545-5 [CrossRef] [Google Scholar]
- J. Manfredi, R.J. Charity, K. Mercurio, R. Shane, L.G. Sobotka, A.H. Wuosmaa, A. Banu, L. Trache, R.E. Tribble, α decay of the excited states in 12c at 7.65 and 9.64 mev, Phys. Rev. C 85, 037603 (2012). 10.1103/PhysRevC.85.037603 [CrossRef] [Google Scholar]
- O.S. Kirsebom, M. Alcorta, M.J.G. Borge, M. Cubero, C.A. Diget, L.M. Fraile, B.R. Fulton, H.O.U. Fynbo, D. Galaviz, B. Jonson et al., Improved limit on direct α decay of the hoyle state, Phys. Rev. Lett. 108, 202501 (2012). 10.1103/Phys-RevLett.108.202501 [CrossRef] [PubMed] [Google Scholar]
- R. Smith, Tz. Kokalova, C. Wheldon, J.E. Bishop, M. Freer, N. Curtis, D.J. Parker, New measurement of the direct 3α decay from the 12C hoyle state, Phys. Rev. Lett. 119, 132502 (2017). 10.1103/Phys-RevLett.119.132502 [CrossRef] [PubMed] [Google Scholar]
- D. Dell’Aquila, I. Lombardo, G. Verde, M. Vigilante, L. Acosta, C. Agodi, F. Cappuzzello, D. Carbone, M. Cavallaro, S. Cherubini et al., High-precision probe of the fully sequential decay width of the hoyle state in 12C, Phys. Rev. Lett. 119, 132501 (2017). 10.1103/PhysRevLett.119.132501 [CrossRef] [PubMed] [Google Scholar]
- T. Rana, S. Bhattacharya, C. Bhattacharya, S. Manna, S. Kundu, K. Banerjee, R. Pandey, P. Roy, A. Dhal, G. Mukherjee et al., New high precision study on the decay width of the hoyle state in 12c, Physics Letters B 793, 130 (2019). https://doi.org/10.1016/j.physletb.2019.04.028 [CrossRef] [Google Scholar]
- A. Raduta, B. Borderie, E. Geraci, N. Le Neindre, P. Napolitani, M. Rivet, R. Alba, F. Amorini, G. Cardella, M. Chatterjee et al., Evidence for α-particle condensation in nuclei from the hoyle state deexcitation, Physics Letters B 705, 65 (2011). https://doi.org/10.1016/j.physletb.2011.10.008 [CrossRef] [Google Scholar]
- J. Bishop, G.V. Rogachev, S. Ahn, E. Aboud, M. Barbui, A. Bosh, C. Hunt, H. Jayatissa, E. Koshchiy, R. Malecek et al., Almost medium-free measurement of the hoyle state direct-decay component with a tpc, Phys. Rev. C 102, 041303 (2020). 10.1103/Phys-RevC.102.041303 [CrossRef] [Google Scholar]
- R. Smith, M. Gai, M.W. Ahmed, M. Freer, H.O.U. Fynbo, D. Schweitzer, S.R. Stern, Stringent upper limit on the direct 3α decay of the hoyle state in 12C, Phys. Rev. C 101, 021302 (2020). 10.1103/Phys-RevC.101.021302 [CrossRef] [Google Scholar]
- V.N. Efimov, Weakly bound states of three resonantly interacting particles., Yadern. Fiz. 12 (1970). [Google Scholar]
- P. Naidon, S. Endo, Efimov physics: a review, Reports on Progress in Physics 80, 056001 (2017). 10.1088/1361-6633/aa50e8 [CrossRef] [PubMed] [Google Scholar]
- H. Zheng, A. Bonasera, The thomas theorem and the efimov states within a generalized bohr model, Journal of Physics Communications 4, 085011 (2020). 10.1088/2399-6528/abaca4 [CrossRef] [Google Scholar]
- J. Bishop, G.V. Rogachev, S. Ahn, E. Aboud, M. Barbui, A. Bosh, J. Hooker, C. Hunt, H. Jayatissa, E. Koshchiy et al., Evidence against the efimov effect in 12C from spectroscopy and astrophysics, Phys. Rev. C 103, L051303 (2021). 10.1103/Phys-RevC.103.L051303 [CrossRef] [Google Scholar]
- M. Munch, M. Alcorta, H.O.U. Fynbo, M. Albers, S. Almaraz-Calderon, M.L. Avila, A.D. Ayangeakaa, B.B. Back, P.F. Bertone, P.F.F. Carnelli et al., Independent measurement of the hoyle state β feeding from 12B using gammasphere, Phys. Rev. C 93, 065803 (2016). 10.1103/PhysRevC.93.065803 [CrossRef] [Google Scholar]
- G. Cardella, A. Bonasera, N. Martorana, L. Acosta, E. De Filippo, E. Geraci, B. Gnoffo, C. Guazzoni, L. Lo Monaco, C. Maiolino et al., Search for rare 3-α decays in the region of the hoyle state of 12c, Nuclear Physics A 1020, 122395 (2022). https://doi.org/10.1016/j.nuclphysa.2022.122395 [CrossRef] [Google Scholar]
- K.P. Artemov, O.P. Belyanin, A.L. Vetoshkin, R. Wolski, M.S. Golovkov, V.Z. Goldberg, M. Madeja, V.V. Pankratov, I.N. Serikov, V.A. Timofeev et al., Effective method of study of α-cluster states, Sov. J. Nucl. Phys. USSR 52, 408 (1990). [Google Scholar]
- J. Bishop, G.V. Rogachev, S. Ahn, M. Barbui, S.M. Cha, E. Harris, C. Hunt, C.H. Kim, D. Kim, S.H. Kim et al., First observation of the β3αp decay of 13O via β-delayed charged-particle spectroscopy, Phys. Rev. Lett. 130, 222501 (2023). 10.1103/Phys-RevLett.130.222501 [CrossRef] [PubMed] [Google Scholar]
- J. Bishop, G.V. Rogachev, S. Ahn, M. Barbui, S.M. Cha, E. Harris, C. Hunt, C.H. Kim, D. Kim, S.H. Kim et al., Cluster structure of 3α + p states in 13N, Phys. Rev. C 109, 054308 (2024). 10.1103/Phys-RevC.109.054308 [CrossRef] [Google Scholar]
- C. Wheldon, T. Kokalova, M. Freer, J. Walshe, R. Hertenberger, H.F. Wirth, N.I. Ashwood, M. Barr, N. Curtis, T. Faestermann et al., Spectroscopy of 9B via high-resolution ejectile-tagged recoil breakup, Phys. Rev. C 91, 024308 (2015). 10.1103/Phys-RevC.91.024308 [CrossRef] [Google Scholar]
- H. Fortune, R. Sherr, Update on b9(1/2+), Nuclear Physics A 898, 78 (2013). https://doi.org/10.1016/j.nuclphysa.2012.12.120 [CrossRef] [Google Scholar]
- H.H. Knudsen, H.O.U. Fynbo, M.J.G. Borge, R. Boutami, P. Dendooven, C.A. Diget, T. Eronen, S. Fox, L.M. Fraile, B. Fulton et al., β-decay of 13O, Phys. Rev. C 72, 044312 (2005). 10.1103/Phys-RevC.72.044312 [CrossRef] [Google Scholar]
- M. Cortesi, S. Rost, W. Mittig, Y. Ayyad-Limonge, D. Bazin, J. Yurkon, A. Stolz, Multi-layer thick gas electron multiplier (M-THGEM): A new MPGD structure for high-gain operation at low-pressure, Review of Scientific Instruments 88, 013303 (2017), https://pubs.aip.org/aip/rsi/article-pdf/doi/10.1063 10.1063/1.4974333 [CrossRef] [PubMed] [Google Scholar]
- P. Fonte, V. Peskov, F. Sauli, Feedback and breakdown in parallel-plate chambers, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 305, 91 (1991). https://doi.org/10.1016/0168-9002(91)90522-R [CrossRef] [Google Scholar]
- M. Dixit, A. Rankin, Simulating the charge dispersion phenomena in micro pattern gas detectors with a resistive anode, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 566, 281 (2006). https://doi.org/10.1016/j.nima.2006.06.050 [CrossRef] [Google Scholar]
- J. Randhawa, M. Cortesi, Y. Ayyad, W. Mittig, T. Ahn, D. Bazin, S. Beceiro-Novo, L. Carpenter, K. Cook, M. Dasgupta et al., Beam-induced space-charge effects in time projection chambers in low-energy nuclear physics experiments, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 948, 162830 (2019). https://doi.org/10.1016/j.nima.2019.162830 [CrossRef] [Google Scholar]
- D. Neyret, Salsa: a new versatile readout chip for mpgd, https://indico.cern.ch/event/1413681/contributions/5998174/attachments/2880954/5047202/SALSA_DRD1_Electronics_workshop_20240619.pdf [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.