Open Access
Issue
EPJ Web Conf.
Volume 312, 2024
22nd Conference on Flavor Physics and CP Violation (FPCP 2024)
Article Number 02002
Number of page(s) 9
Section Neutrino Physics
DOI https://doi.org/10.1051/epjconf/202431202002
Published online 20 November 2024
  1. H. Nunokawa, S.J. Parke, J.W.F. Valle, CP Violation and Neutrino Oscillations, Prog. Part. Nucl. Phys. 60, 338 (2008). 10.1016/j.ppnp.2007.10.001 [CrossRef] [Google Scholar]
  2. I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, A. Zhou, The fate of hints: updated global analysis of three-flavor neutrino oscillations, JHEP 09, 178 (2020). 10.1007/JHEP09(2020)178 [CrossRef] [Google Scholar]
  3. L. Wolfenstein, Neutrino Oscillations in Matter, Phys. Rev. D 17, 2369 (1978). 10.1103/PhysRevD.17.2369 [CrossRef] [Google Scholar]
  4. Nufit (2015), http://www.nu-fit.org/?q=node/8 [Google Scholar]
  5. K. Abe et al. (T2K), Improved constraints on neutrino mixing from the T2K experiment with 3.13 × 1021 protons on target, Phys. Rev. D 103, 112008 (2021). 10.1103/Phys-RevD.103.112008 [CrossRef] [Google Scholar]
  6. M.A. Acero et al. (NOvA), Improved measurement of neutrino oscillation parameters by the NOvA experiment, Phys. Rev. D 106, 032004 (2022). 10.1103/Phys-RevD.106.032004 [CrossRef] [Google Scholar]
  7. K. Abe et al. (T2K), Measurements of neutrino oscillation parameters from the T2K experiment using 3.6 × 1021 protons on target, Eur. Phys. J. C 83, 782 (2023). 10.1140/epjc/s10052-023-11819-x [CrossRef] [Google Scholar]
  8. D.S. Ayres et al. (NOvA), The NOvA Technical Design Report (2007). 10.2172/935497 [CrossRef] [Google Scholar]
  9. J.A. Formaggio, G.P. Zeller, From eV to EeV: Neutrino Cross Sections Across Energy Scales, Rev. Mod. Phys. 84, 1307 (2012). 10.1103/RevModPhys.84.1307 [CrossRef] [Google Scholar]
  10. M. Day, K.S. McFarland, Differences in Quasi-Elastic Cross-Sections of Muon and Electron Neutrinos, Phys. Rev. D 86, 053003 (2012). 10.1103/PhysRevD.86.053003 [CrossRef] [Google Scholar]
  11. P. Stowell et al. (MINERvA), Tuning the GENIE Pion Production Model with MINERνA Data, Phys. Rev. D 100, 072005 (2010). 10.1103/PhysRevD.100.072005 [Google Scholar]
  12. L.L. Salcedo, E. Oset, M.J. Vicente-Vacas, C. Garcia-Recio, Computer Simulation of Inclusive Pion Nuclear Reactions, Nucl. Phys. A 484, 557 (1988). 10.1016/0375-9474(88)90310-7 [CrossRef] [Google Scholar]
  13. S. Dolan, A. Nikolakopoulos, O. Page, S. Gardiner, N. Jachowicz, V. Pandey, Implementation of the continuum random phase approximation model in the GENIE generator and an analysis of nuclear effects in low-energy transfer neutrino interactions, Phys. Rev. D 106, 073001 (2022). 10.1103/PhysRevD.106.073001 [CrossRef] [Google Scholar]
  14. A. Gelman, X.L. Meng, H. Stern, Posterior predictive assessment of model fitness via realized discrepancies, Statistica Sinica 6, 733 (1996). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.