Open Access
Issue
EPJ Web Conf.
Volume 312, 2024
22nd Conference on Flavor Physics and CP Violation (FPCP 2024)
Article Number 04002
Number of page(s) 12
Section Heavy Quark Decays and CKM
DOI https://doi.org/10.1051/epjconf/202431204002
Published online 20 November 2024
  1. S. Nandi, S. Sahoo, R. Sain, An Imperative study of the angular observables in Λ0b → Λ+c(→ Λπ+)τν¯τ decay and probing the footprint of new physics (2024), 2403.12155. [Google Scholar]
  2. W. Detmold, C. Lehner, S. Meinel, Λbpℓν¯ and Λb → Λcν¯ form factors from lattice QCD with relativistic heavy quarks, Phys. Rev. D 92, 034503 (2015), 1503.01421. 10.1103/PhysRevD.92.034503 [CrossRef] [Google Scholar]
  3. S. Shivashankara, W. Wu, A. Datta, Λb → Λcτν¯τ Decay in the Standard Model and with New Physics, Phys. Rev. D 91, 115003 (2015), 1502.07230. 10.1103/Phys-RevD.91.115003 [CrossRef] [Google Scholar]
  4. X.Q. Li, Y.D. Yang, X. Zhang, ΛbΛcτντ decay in scalar and vector leptoquark scenarios, JHEP 02, 068 (2017), 1611.01635. 10.1007/JHEP02(2017)068 [Google Scholar]
  5. A. Datta, S. Kamali, S. Meinel, A. Rashed, Phenomenology of Λb → Λcτντ using lattice QCD calculations, JHEP 08, 131 (2017), 1702.02243. 10.1007/JHEP08(2017)131 [CrossRef] [Google Scholar]
  6. E. Di Salvo, F. Fontanelli, Z.J. Ajaltouni, Detailed Study of the Decay Λb → Λcτν¯τ, Int. J. Mod. Phys. A 33, 1850169 (2018), 1804.05592. 10.1142/S0217751X18501695 [CrossRef] [Google Scholar]
  7. A. Ray, S. Sahoo, R. Mohanta, Probing new physics in semileptonic Λb decays, Phys. Rev. D 99, 015015 (2019), 1812.08314. 10.1103/PhysRevD.99.015015 [CrossRef] [Google Scholar]
  8. N. Penalva, E. Hernández, J. Nieves, Further tests of lepton flavour universality from the charged lepton energy distribution in bc semileptonic decays: The case of Λb → Λcℓν¯, Phys. Rev. D 100, 113007 (2019), 1908.02328. 10.1103/PhysRevD.100.113007 [CrossRef] [Google Scholar]
  9. M. Ferrillo, A. Mathad, P. Owen, N. Serra, Probing effects of new physics in Λ0b → Λ+cµν¯µ decays, JHEP 12, 148 (2019), 1909.04608. 10.1007/JHEP12(2019)148 [CrossRef] [Google Scholar]
  10. X.L. Mu, Y. Li, Z.T. Zou, B. Zhu, Investigation of effects of new physics in Λb → Λcτν¯τ decay, Phys. Rev. D 100, 113004 (2019), 1909.10769. 10.1103/PhysRevD.100.113004 [CrossRef] [Google Scholar]
  11. P. Böer, A. Kokulu, J.N. Toelstede, D. van Dyk, Angular Analysis of \boldmath Λb → Λc(→ Λπ)ℓν¯, JHEP 12, 082 (2019), 1907.12554. 10.1007/JHEP12(2019)082 [CrossRef] [Google Scholar]
  12. D. Becˇirevic´, F. Jaffredo, Looking for the effects of New Physics in the Λb → Λc(→ Λπ)ℓν decay mode (2022), 2209.13409. [Google Scholar]
  13. M. Fedele, M. Blanke, A. Crivellin, S. Iguro, T. Kitahara, U. Nierste, R. Watanabe, Impact of Λb→Λcτν measurement on new physics in b→clν transitions, Phys. Rev. D 107, 055005 (2023), 2211.14172. 10.1103/PhysRevD.107.055005 [CrossRef] [Google Scholar]
  14. S. Karmakar, S. Chattopadhyay, A. Dighe, Identifying physics beyond SMEFT in the angular distribution of Λb → Λc(→ Λπ)τν¯τ decay (2023), 2305.16007. [Google Scholar]
  15. R. Aaij et al. (LHCb), Observation of the decay Λ0b → Λ+cτν¯τ, Phys. Rev. Lett. 128, 191803 (2022), 2201.03497. 10.1103/PhysRevLett.128.191803 [CrossRef] [PubMed] [Google Scholar]
  16. J.P. Lees et al. (BaBar), Evidence for an excess of B¯ → D(∗)τν¯τ decays, Phys. Rev. Lett. 109, 101802 (2012), 1205.5442. 10.1103/PhysRevLett.109.101802 [CrossRef] [PubMed] [Google Scholar]
  17. J.P. Lees et al. (BaBar), Measurement of an Excess of B¯ → D(∗)τν¯τ Decays and Implications for Charged Higgs Bosons, Phys. Rev. D 88, 072012 (2013), 1303.0571. 10.1103/PhysRevD.88.072012 [CrossRef] [Google Scholar]
  18. M. Huschle et al. (Belle), Measurement of the branching ratio of B¯ → D(∗)τν¯τ relative to B¯ → D(∗)ν¯ decays with hadronic tagging at Belle, Phys. Rev. D 92, 072014 (2015), 1507.03233. 10.1103/PhysRevD.92.072014 [CrossRef] [Google Scholar]
  19. Y. Sato et al. (Belle), Measurement of the branching ratio of B¯0D∗+τν¯τ relative to B¯0D∗+ν¯ decays with a semileptonic tagging method, Phys. Rev. D 94, 072007 (2016), 1607.07923. 10.1103/PhysRevD.94.072007 [CrossRef] [Google Scholar]
  20. S. Hirose et al. (Belle), Measurement of the τ lepton polarization and R(D) in the decay B¯ → Dτν¯τ, Phys. Rev. Lett. 118, 211801 (2017), 1612.00529. 10.1103/Phys-RevLett.118.211801 [CrossRef] [PubMed] [Google Scholar]
  21. S. Hirose et al. (Belle), Measurement of the τ lepton polarization and R(D) in the decay B¯ → Dτν¯τ with one-prong hadronic τ decays at Belle, Phys. Rev. D 97, 012004 (2018), 1709.00129. 10.1103/PhysRevD.97.012004 [CrossRef] [Google Scholar]
  22. G. Caria et al. (Belle), Measurement of R(D) and R(D) with a semileptonic tagging method, Phys. Rev. Lett. 124, 161803 (2020), 1910.05864. 10.1103/Phys-RevLett.124.161803 [CrossRef] [PubMed] [Google Scholar]
  23. R. Aaij et al. (LHCb), Measurement of the ratio of branching fractions B(B¯0D∗+τν¯τ)/ B(B¯0D∗+µν¯µ), Phys. Rev. Lett. 115, 111803 (2015), [Erratum: Phys.Rev.Lett. 115, 159901 (2015)], 1506.08614. 10.1103/PhysRevLett.115.111803 [CrossRef] [PubMed] [Google Scholar]
  24. R. Aaij et al. (LHCb), Measurement of the ratio of the B0D∗−τ+ντ and B0D∗−µ+νµ branching fractions using three-prong τ-lepton decays, Phys. Rev. Lett. 120, 171802 (2018), 1708.08856. 10.1103/PhysRevLett.120.171802 [CrossRef] [PubMed] [Google Scholar]
  25. R. Aaij et al. (LHCb), Test of Lepton Flavor Universality by the measurement of the B0D∗−τ+ντ branching fraction using three-prong τ decays, Phys. Rev. D 97, 072013 (2018), 1711.02505. 10.1103/PhysRevD.97.072013 [CrossRef] [Google Scholar]
  26. Measurement of the ratios of branching fractions R(D) and R(D0) (2023), 2302.02886. [Google Scholar]
  27. Y.S. Amhis et al. (Heavy Flavor Averaging Group, HFLAV), Averages of b-hadron, c-hadron, and τ-lepton properties as of 2021, Phys. Rev. D 107, 052008 (2023), 2206.07501. 10.1103/PhysRevD.107.052008 [CrossRef] [Google Scholar]
  28. I. Ray, S. Nandi, Test of new physics effects in B¯ → (D(∗), π)ν¯ decays with heavy and light leptons (2023), 2305.11855. [Google Scholar]
  29. J. Abdallah et al. (DELPHI), Measurement of the Lambda0(b) decay form-factor, Phys. Lett. B 585, 63 (2004), hep-ex/0403040. 10.1016/j.physletb.2004.01.086 [CrossRef] [Google Scholar]
  30. R. Aaij et al. (LHCb), Measurement of the D longitudinal polarization in B0D∗−τ+ντ decays (2023), 2311.05224. [Google Scholar]
  31. J.A. Bailey et al. (MILC), B→Dℓν form factors at nonzero recoil and |Vcb| from 2+1flavor lattice QCD, Phys. Rev. D 92, 034506 (2015), 1503.07237. 10.1103/Phys-RevD.92.034506 [CrossRef] [Google Scholar]
  32. H. Na, C.M. Bouchard, G.P. Lepage, C. Monahan, J. Shigemitsu (HPQCD), BDlν form factors at nonzero recoil and extraction of |Vcb|, Phys. Rev. D 92, 054510 (2015), [Erratum: Phys.Rev.D 93, 119906 (2016)], 1505.03925. 10.1103/Phys-RevD.93.119906 [CrossRef] [Google Scholar]
  33. A. Bazavov et al. (Fermilab Lattice, MILC, Fermilab Lattice, MILC), Semileptonic form factors for BDℓν at nonzero recoil from 2+1-flavor lattice QCD: Fermilab Lattice and MILC Collaborations, Eur. Phys. J. C 82, 1141 (2022), [Erratum: Eur.Phys.J.C 83, 21 (2023)], 2105.14019. 10.1140/epjc/s10052-022-10984-9 [CrossRef] [Google Scholar]
  34. Y. Aoki, B. Colquhoun, H. Fukaya, S. Hashimoto, T. Kaneko, R. Kellermann, J. Koponen, E. Kou (JLQCD), BDℓν semileptonic form factors from lattice QCD with Möbius domain-wall quarks (2023), 2306.05657. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.