Open Access
Issue
EPJ Web Conf.
Volume 312, 2024
22nd Conference on Flavor Physics and CP Violation (FPCP 2024)
Article Number 05003
Number of page(s) 12
Section Flavor and Dark Sector
DOI https://doi.org/10.1051/epjconf/202431205003
Published online 20 November 2024
  1. T2K Collaboration, K. Abe et al., Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam, Phys. Rev. Lett. 107 041801 (2011), https://doi.org/10.1103/PhysRevLett.107.041801 [CrossRef] [PubMed] [Google Scholar]
  2. T2K Collaboration, K. Abe et al., Observation of Electron Neutrino Appearance in a Muon Neutrino Beam. Phys. Rev. Lett. 112, 061802 (2014). https://doi.org/10.1103/PhysRevLett.112.061802 [CrossRef] [PubMed] [Google Scholar]
  3. Double Chooz Collaboration, Y. Abe et al., Indication of Reactor ν¯e Disappearance in the Double Chooz Experiment. Phys. Rev. Lett. 108, 131801 (2012). https://doi.org/10.1103/PhysRevLett.108.131801 [CrossRef] [PubMed] [Google Scholar]
  4. Double Chooz Collaboration, H. de Kerret et al., First Double Chooz θ13 Measurement via Total Neutron Capture Detection. Nature Phys. 16 (2020), no. 5 558–564. https://doi.org/10.1038/s41567-019-0720-1 [CrossRef] [Google Scholar]
  5. Daya Bay Collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay. Phys. Rev. Lett. 108, 171803 (2012). https://doi.org/10.1103/PhysRevLett.108.171803 [CrossRef] [PubMed] [Google Scholar]
  6. Daya Bay Collaboration, F. An et al., Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay. Phys. Rev. Lett. 118 (2017), no. 25 251801. https://doi.org/10.1103/PhysRevLett.118.251801 [CrossRef] [PubMed] [Google Scholar]
  7. Daya Bay Collaboration, D. Adey et al., Measurement of the Electron Antineutrino Oscillation with 1958 Days of Operation at Daya Bay. Phys. Rev. Lett. 121 (2018), no. 24 241805. https://doi.org/10.1103/PhysRevLett.121.241805 [CrossRef] [PubMed] [Google Scholar]
  8. RENO Collaboration, J. Ahn et al., Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment. Phys. Rev. Lett. 108, 191802 (2012). https://doi.org/10.1103/PhysRevLett.108.191802 [CrossRef] [PubMed] [Google Scholar]
  9. MINOS Collaboration, P. Adamson et al., Measurement of Neutrino and Antineutrino Oscillations Using Beam and Atmospheric Data in MINOS. Phys. Rev. Lett. 110 (2013), no. 25 251801. https://doi.org/10.1103/PhysRevLett.110.251801 [CrossRef] [PubMed] [Google Scholar]
  10. MINOS Collaboration, P. Adamson et al., Combined analysis of νµ disappearance and νµνe appearance in MINOS using accelerator and atmospheric neutrinos. Phys. Rev. Lett. 112 (2014) 191801. https://doi.org/10.1103/PhysRevLett.112.191801 [CrossRef] [PubMed] [Google Scholar]
  11. O. Azzolini et al. (CUPID-0 collaboration), Measurement of the Electron Antineutrino Oscillation with 1958 Days of Operation at Daya Bay. Phys. Rev. Lett. 120, 232502 (2018). https://doi.org/10.1103/PhysRevLett.120.232502 [CrossRef] [PubMed] [Google Scholar]
  12. WMAP Collaboration, G. Hinshaw et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. Astrophys. J. Suppl. 208 (2013) 19. https://doi.org/10.1088/0067-0049/208/2/19 [CrossRef] [Google Scholar]
  13. Planck Collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters. https://doi.org/10.1051/0004-6361/201833910 [Google Scholar]
  14. S. Tulin and H.-B. Yu, Dark Matter Self-interactions and Small Scale Structure. Phys. Rept. 730 (2018) 1–57. https://doi.org/10.1016/j.physrep.2017.11.001 [CrossRef] [Google Scholar]
  15. J. S. Bullock and M. Boylan-Kolchin, Small-Scale Challenges to the λdCDM Paradigm. Ann. Rev. Astron. Astrophys. 55 (2017) 343–387. https://doi.org/10.1146/annurev-astro-091916-055230 [CrossRef] [Google Scholar]
  16. D. N. Spergel and P. J. Steinhardt, Observational evidence for selfinteracting cold dark matter. Phys. Rev. Lett. 84 (2000) 3760–3763. https://doi.org/10.1103/PhysRevLett.84.3760 [CrossRef] [PubMed] [Google Scholar]
  17. E. D. Carlson, M. E. Machacek, and L. J. Hall, Self-interacting dark matter. Astrophys. J. 398 (1992) 43–52. [CrossRef] [Google Scholar]
  18. A. A. de Laix, R. J. Scherrer, and R. K. Schaefer, Constraints of selfinteracting dark matter. Astrophys. J. 452 (1995) 495. https://doi.org/10.1086/176189 [CrossRef] [Google Scholar]
  19. M. R. Buckley and P. J. Fox, Dark Matter Self-Interactions and Light Force Carriers. Phys. Rev. D 81 (2010) 083522. https://doi.org/10.1103/PhysRevD.81.083522 [CrossRef] [Google Scholar]
  20. J. L. Feng, M. Kaplinghat, and H.-B. Yu, Halo Shape and Relic Density Exclusions of Sommerfeld-Enhanced Dark Matter Explanations of Cosmic Ray Excesses. Phys. Rev. Lett. 104 (2010) 151301. https://doi.org/10.1103/PhysRevLett.104.151301 [CrossRef] [PubMed] [Google Scholar]
  21. J. L. Feng, M. Kaplinghat, H. Tu, and H.-B. Yu, Hidden Charged Dark Matter. JCAP 07 (2009) 004. https://doi.org/10.1088/1475-7516/2009/07/004 [CrossRef] [Google Scholar]
  22. A. Loeb and N. Weiner, Cores in Dwarf Galaxies from Dark Matter with a Yukawa Potential. Phys. Rev. Lett. 106 (2011) 171302. https://doi.org/10.1103/PhysRevLett.106.171302 [CrossRef] [PubMed] [Google Scholar]
  23. J. Zavala, M. Vogelsberger, and M. G. Walker, Constraining Self-Interacting Dark Matter with the Milky Way’s dwarf spheroidals. Mon. Not. Roy. Astron. Soc. 431 (2013) L20–L24. https://doi.org/10.1093/mnrasl/sls005 [CrossRef] [Google Scholar]
  24. M. Vogelsberger, J. Zavala, and A. Loeb, Subhaloes in Self-Interacting Galactic Dark Matter Haloes. Mon. Not. Roy. Astron. Soc. 423 (2012) 3740. https://doi.org/10.1111/j.1365-2966.2012.20912.x [CrossRef] [Google Scholar]
  25. T. Bringmann, F. Kahlhoefer, K. Schmidt-Hoberg, and P. Walia, Strong constraints on self-interacting dark matter with light mediators. Phys. Rev. Lett. 118 (2017), no. 14 141802. https://doi.org/10.1103/PhysRevLett.118.141802 [CrossRef] [PubMed] [Google Scholar]
  26. M. Kaplinghat, S. Tulin, and H.-B. Yu, Dark Matter Halos as Particle Colliders: Unified Solution to Small-Scale Structure Puzzles from Dwarfs to Clusters. Phys. Rev. Lett. 116 (2016), no. 4 041302. https://doi.org/10.1103/PhysRevLett.116.041302 [CrossRef] [PubMed] [Google Scholar]
  27. A. Kamada, H. J. Kim, and T. Kuwahara, Maximally self-interacting dark matter: models and predictions. JHEP 20 (2020) 202. https://doi.org/10.1007/JHEP01(2020)202 [CrossRef] [Google Scholar]
  28. L. G. van den Aarssen, T. Bringmann, and C. Pfrommer, Is dark matter with longrange interactions a solution to all small-scale problems of ΛCDM cosmology? Phys. Rev. Lett. 109 (2012) 231301. https://doi.org/10.1103/PhysRevLett.109.231301 [CrossRef] [PubMed] [Google Scholar]
  29. S. Tulin, H.-B. Yu, and K. M. Zurek, Beyond Collisionless Dark Matter: Particle Physics Dynamics for Dark Matter Halo Structure. Phys. Rev. D 87 (2013), no. 11 115007. https://doi.org/10.1103/PhysRevD.87.115007 [NASA ADS] [CrossRef] [Google Scholar]
  30. M. Dutta, S. Mahapatra, D. Borah, and N. Sahu, Self-interacting Inelastic Dark Matter in the light of XENON1T excess. Phys. Rev. D 103, 095018 (2021). https://doi.org/10.1103/PhysRevD.103.095018 [CrossRef] [Google Scholar]
  31. D. Borah, M. Dutta, S. Mahapatra, and N. Sahu, Boosted Self-Interacting Dark Matter and XENON1T Excess. http://arxiv.org/abs/2107.13176 [Google Scholar]
  32. D. Borah, M. Dutta, S. Mahapatra, and N. Sahu, Self-interacting Dark Matter via Right Handed Neutrino Portal. Phys. Rev. D 105, 015004 (2022). https://doi.org/10.1103/PhysRevD.105.015004 [CrossRef] [Google Scholar]
  33. D. Borah, M. Dutta, S. Mahapatra, and N. Sahu, Singlet-Doublet Self-interacting Dark Matter and neutrino Mass. http://arxiv.org/abs/2112.06847 [Google Scholar]
  34. M. Dutta, N. Narendra, N. Sahu, S. Shil, Asymmetric self-interacting dark matter via Dirac leptogenesis. Phys. Rev. D 106, 095017 (2022). https://doi.org/10.1103/PhysRevD.106.095017 [CrossRef] [Google Scholar]
  35. M. Dutta, S. Mahapatra, Mini-review on self-interacting dark matter. Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01121-6 [Google Scholar]
  36. K. Dick, M. Lindner, M. Ratz and D. Wright, Phys. Rev. Lett. 84, 4039 (2000). [CrossRef] [PubMed] [Google Scholar]
  37. D. G. Cerdeno, A. Dedes and T. E. J. Underwood, The Minimal Phantom Sector of the Standard Model: Higgs Phenomenology and Dirac Leptogenesis. JHEP 0609, 067 (2006). https://doi.org/10.1088/1126-6708/2006/09/067 [CrossRef] [Google Scholar]
  38. P. H. Gu and H. J. He, Neutrino Mass and Baryon Asymmetry from Dirac Seesaw. JCAP 0612, 010 (2006). https://doi.org/10.1088/1475-7516/2006/12/010 [CrossRef] [Google Scholar]
  39. P. H. Gu, H. J. He and U. Sarkar, Realistic neutrinogenesis with radiative vertex correction. Phys. Lett. B 659, 634 (2008). https://doi.org/10.1016/j.physletb.2007.11.061 [CrossRef] [Google Scholar]
  40. H. Murayama and A. Pierce, Realistic Dirac leptogenesis. Phys. Rev. Lett. 89, 271601 (2002). https://doi.org/10.1103/PhysRevLett.89.271601 [CrossRef] [PubMed] [Google Scholar]
  41. C. Arina and N. Sahu, Asymmetric Inelastic Inert Doublet Dark Matter from Triplet Scalar Leptogenesis. Nucl. Phys. B 854, 666 (2012). https://doi.org/10.1016/j.nuclphysb.2011.09.014 [CrossRef] [Google Scholar]
  42. C. Arina, J. O. Gong and N. Sahu, Unifying darko-lepto-genesis with scalar triplet inflation. Nucl. Phys. B 865, 430 (2012). https://doi.org/10.1016/j.nuclphysb.2012.07.029 [CrossRef] [Google Scholar]
  43. C. Arina, R. N. Mohapatra and N. Sahu, Co-genesis of Matter and Dark Matter with Vector-like Fourth Generation Leptons. Phys. Lett. B 720, 130 (2013). https://doi.org/10.1016/j.physletb.2013.01.059 [CrossRef] [Google Scholar]
  44. J. McDonald, N. Sahu and U. Sarkar, Type-II Seesaw at Collider, Lepton Asymmetry and Singlet Scalar Dark Matter. JCAP 0804, 037 (2008). https://doi.org/10.1088/1475-7516/2008/04/037 [CrossRef] [Google Scholar]
  45. J. Heeck, Leptogenesis with Lepton-Number-Violating Dirac Neutrinos. Phys. Rev. D 88, 076004 (2013). https://doi.org/10.1103/PhysRevD.88.076004 [CrossRef] [Google Scholar]
  46. E. Ma and U. Sarkar, Neutrino masses and leptogenesis with heavy Higgs triplets. Phys. Rev. Lett. 80 (1998) 5716–5719. https://doi.org/10.1103/PhysRevLett.80.5716 [CrossRef] [Google Scholar]
  47. CRESST Collaboration, A. Abdelhameed et al., First results from the CRESST-III low-mass dark matter program. Phys. Rev. D 100 (2019), no. 10 102002. https://doi.org/10.1103/PhysRevD.100.102002 [NASA ADS] [CrossRef] [Google Scholar]
  48. XENON Collaboration, E. Aprile et al., Dark Matter Search Results from a One TonYear Exposure of XENON1T. Phys. Rev. Lett. 121 (2018), no. 11 111302. https://doi.org/10.1103/PhysRevLett.121.111302 [CrossRef] [PubMed] [Google Scholar]
  49. S. Tulin, H.-B. Yu, and K. M. Zurek, Resonant Dark Forces and Small Scale Structure. Phys. Rev. Lett. 110 (2013), no. 11 111301. https://doi.org/10.1103/PhysRevLett.110.111301 [CrossRef] [PubMed] [Google Scholar]
  50. S. A. Khrapak, A. V. Ivlev, G. E. Morfill, and S. K. Zhdanov, Scattering in the Attractive Yukawa Potential in the Limit of Strong Interaction. Phys. Rev. Lett. 90 (2003), no. 22 225002. https://doi.org/10.1103/PhysRevLett.90.225002 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.