Open Access
Issue
EPJ Web Conf.
Volume 312, 2024
22nd Conference on Flavor Physics and CP Violation (FPCP 2024)
Article Number 06004
Number of page(s) 6
Section Exotic Quarkonium-Like State
DOI https://doi.org/10.1051/epjconf/202431206004
Published online 20 November 2024
  1. M. Gell-Mann, A schematic model of baryons and mesons, Phys. Lett. 8, 214 (1964). 10.1016/S0031-9163(64)92001-3 [CrossRef] [Google Scholar]
  2. S.K. Choi et al. (Belle), Observation of a narrow charmonium-like state in exclusive B±K±π+πJ/ψ decays, Phys. Rev. Lett. 91, 262001 (2003), hep-ex/0309032. 10.1103/PhysRevLett.91.262001 [CrossRef] [PubMed] [Google Scholar]
  3. N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.P. Shen, C.E. Thomas, A. Vairo, C.Z. Yuan, The XYZ states: experimental and theoretical status and perspectives, Phys. Rept. 873, 1 (2020), 1907.07583. 10.1016/j.physrep.2020.05.001 [CrossRef] [Google Scholar]
  4. M. Nielsen, S.J. Brodsky, G.F. de Téramond, H.G. Dosch, F.S. Navarra, L. Zou, Supersymmetry in the Double-Heavy Hadronic Spectrum, Phys. Rev. D 98, 034002 (2018), 1805.11567. 10.1103/PhysRevD.98.034002 [CrossRef] [Google Scholar]
  5. M. Nielsen, S.J. Brodsky, Hadronic superpartners from a superconformal and supersymmetric algebra, Phys. Rev. D 97, 114001 (2018), 1802.09652. 10.1103/Phys-RevD.97.114001 [CrossRef] [Google Scholar]
  6. A. Ali, L. Maiani, A.D. Polosa, Multiquark Hadrons (Cambridge University Press, Cambridge, 2019) [Google Scholar]
  7. A. Hayrapetyan et al. (CMS), New Structures in the J/ψJ/ψ Mass Spectrum in ProtonProton Collisions at s=13 TeV, Phys. Rev. Lett. 132, 111901 (2024), 2306.07164. 10.1103/PhysRevLett.132.111901 [CrossRef] [PubMed] [Google Scholar]
  8. R. Aaij et al. (LHCb), Observation of structure in the J/ψ -pair mass spectrum, Sci. Bull. 65, 1983 (2020), 2006.16957. 10.1016/j.scib.2020.08.032 [CrossRef] [Google Scholar]
  9. G. Aad et al. (ATLAS), Observation of an Excess of Dicharmonium Events in the Four-Muon Final State with the ATLAS Detector, Phys. Rev. Lett. 131, 151902 (2023), 2304.08962. 10.1103/PhysRevLett.131.151902 [CrossRef] [PubMed] [Google Scholar]
  10. J.Z. Wang, D.Y. Chen, X. Liu, T. Matsuki, Producing fully charm structures in the -pair invariant mass spectrum, Phys. Rev. D 103, 071503 (2021), 2008.07430. 10.1103/PhysRevD.103.L071503 [Google Scholar]
  11. A.V. Berezhnoy, A.V. Luchinsky, A.A. Novoselov, Heavy tetraquarks production at the LHC, Phys. Rev. D 86, 034004 (2012), 1111.1867. 10.1103/PhysRevD.86.034004 [CrossRef] [Google Scholar]
  12. J. Wu, Y.R. Liu, K. Chen, X. Liu, S.L. Zhu, Heavy-flavored tetraquark states with the configuration, Phys. Rev. D 97, 094015 (2018), 1605.01134. 10.1103/Phys-RevD.97.094015 [CrossRef] [Google Scholar]
  13. H.X. Chen, W. Chen, X. Liu, S.L. Zhu, Strong decays of fully-charm tetraquarks into di-charmonia, Sci. Bull. 65, 1994 (2020), 2006.16027. 10.1016/j.scib.2020.08.038 [CrossRef] [Google Scholar]
  14. Y. Bai, S. Lu, J. Osborne, Beauty-full tetraquarks, Phys. Lett. B 798, 134930 (2019), 1612.00012. 10.1016/j.physletb.2019.134930 [CrossRef] [Google Scholar]
  15. Z.G. Wang, Analysis of the tetraquark states with QCD sum rules, Eur. Phys. J. C 77, 432 (2017), 1701.04285. 10.1140/epjc/s10052-017-4997-0 [CrossRef] [Google Scholar]
  16. J.M. Richard, A. Valcarce, J. Vijande, String dynamics and metastability of allheavy tetraquarks, Phys. Rev. D 95, 054019 (2017), 1703.00783. 10.1103/Phys-RevD.95.054019 [CrossRef] [Google Scholar]
  17. A. Esposito, A.D. Polosa, A di-bottomonium at the LHC?, Eur. Phys. J. C 78, 782 (2018), 1807.06040. 10.1140/epjc/s10052-018-6269-z [CrossRef] [PubMed] [Google Scholar]
  18. M. Karliner, S. Nussinov, J.L. Rosner, states: Masses, production, and decays, Phys. Rev. D 95, 034011 (2017), 1611.00348. 10.1103/PhysRevD.95.034011 [CrossRef] [Google Scholar]
  19. M.A. Bedolla, J. Ferretti, C.D. Roberts, E. Santopinto, Spectrum of fully-heavy tetraquarks from a diquark+antidiquark perspective, Eur. Phys. J. C 80, 1004 (2020), 1911.00960. 10.1140/epjc/s10052-020-08579-3 [CrossRef] [Google Scholar]
  20. M.N. Anwar, J. Ferretti, F.K. Guo, E. Santopinto, B.S. Zou, Spectroscopy and decays of the fully-heavy tetraquarks, Eur. Phys. J. C 78, 647 (2018), 1710.02540. 10.1140/epjc/s10052-018-6073-9 [CrossRef] [Google Scholar]
  21. G. Yang, J. Ping, L. He, Q. Wang, Potential model prediction of fully-heavy tetraquarks QQQ¯Q¯ (Q = c, b) (2020), 2006.13756. [Google Scholar]
  22. X. Jin, Y. Xue, H. Huang, J. Ping, Full-heavy tetraquarks in constituent quark models, Eur. Phys. J. C 80, 1083 (2020), 2006.13745. 10.1140/epjc/s10052-020-08650-z [CrossRef] [Google Scholar]
  23. M.S. Liu, Q.F. Lü, X.H. Zhong, Q. Zhao, All-heavy tetraquarks, Phys. Rev. D 100, 016006 (2019), 1901.02564. 10.1103/PhysRevD.100.016006 [CrossRef] [Google Scholar]
  24. M.S. liu, F.X. Liu, X.H. Zhong, Q. Zhao, Full-heavy tetraquark states and their evidences in the LHCb di-J/ψ spectrum (2020), 2006.11952. [Google Scholar]
  25. F.X. Liu, M.S. Liu, X.H. Zhong, Q. Zhao, Higher mass spectra of the fullycharmed and fully-bottom tetraquarks, Phys. Rev. D 104, 116029 (2021), 2110.09052. 10.1103/PhysRevD.104.116029 [CrossRef] [Google Scholar]
  26. W. Chen, H.X. Chen, X. Liu, T.G. Steele, S.L. Zhu, Hunting for exotic doubly hidden-charm/bottom tetraquark states, Phys. Lett. B 773, 247 (2017), 1605.01647. 10.1016/j.physletb.2017.08.034 [CrossRef] [Google Scholar]
  27. G.J. Wang, L. Meng, S.L. Zhu, Spectrum of the fully-heavy tetraquark state QQQ¯′ Q¯′, Phys. Rev. D 100, 096013 (2019), 1907.05177. 10.1103/PhysRevD.100.096013 [CrossRef] [Google Scholar]
  28. R. Zhu, Fully-heavy tetraquark spectra and production at hadron colliders, Nucl. Phys. B 966, 115393 (2021), 2010.09082. 10.1016/j.nuclphysb.2021.115393 [CrossRef] [Google Scholar]
  29. S. Chatrchyan et al. (CMS), The CMS Experiment at the CERN LHC, JINST 3, S08004 (2008). 10.1088/1748-0221/3/08/S08004 [Google Scholar]
  30. P. Zyla et al. (Particle Data Group), Review of Particle Physics, PTEP 2020, 083C01 (2020). 10.1093/ptep/ptaa104 [Google Scholar]
  31. A.R. Bohm, Y. Sato, Relativistic resonances: Their masses, widths, lifetimes, superposition, and causal evolution, Phys. Rev. D 71, 085018 (2005), hep-ph/0412106. 10.1103/PhysRevD.71.085018 [CrossRef] [Google Scholar]
  32. F. Von Hippel, C. Quigg, Centrifugal-barrier effects in resonance partial decay widths, shapes, and production amplitudes, Phys. Rev. D 5, 624 (1972). 10.1103/Phys-RevD.5.624 [CrossRef] [Google Scholar]
  33. S.U. Chung, Helicity-coupling amplitudes in tensor formalism, Phys. Rev. D 48, 1225 (1993), [Erratum: 10.1103/PhysRevD.56.4419]. 10.1103/PhysRevD.48.1225 [CrossRef] [PubMed] [Google Scholar]
  34. R. Aaij et al. (LHCb), Observation of J/ψp Resonances Consistent with Pentaquark States in Λ0bJ/ψK p Decays, Phys. Rev. Lett. 115, 072001 (2015), 1507.03414. 10.1103/PhysRevLett.115.072001 [CrossRef] [PubMed] [Google Scholar]
  35. A.M. Sirunyan et al. (CMS), Measurement of the Υ(1S) pair production cross section and search for resonances decaying to Υ(1S)µ+µ in proton-proton collisions at √s = 13 TeV, Phys. Lett. B 808, 135578 (2020), 2002.06393. 10.1016/j.physletb.2020.135578 [CrossRef] [Google Scholar]
  36. W.L. Wu, Y.K. Chen, L. Meng, S.L. Zhu, Benchmark calculations of fully heavy compact and molecular tetraquark states, Physical Review D 109 (2024). 10.1103/phys-revd.109.054034 [Google Scholar]
  37. R. Tiwari, D.P. Rathaud, A.K. Rai, Spectroscopy of all charm tetraquark states, Indian J. Phys. 97, 943 (2023), 2108.04017. 10.1007/s12648-022-02427-8 [CrossRef] [Google Scholar]
  38. Y.Q. Ma, H.F. Zhang, Exploring the Di-J/ψ Resonances around 6.9 GeV Based on ab initio Perturbative QCD (2020), 2009.08376. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.