Open Access
Issue
EPJ Web Conf.
Volume 314, 2024
QCD@Work 2024 - International Workshop on Quantum Chromodynamics - Theory and Experiment
Article Number 00021
Number of page(s) 7
DOI https://doi.org/10.1051/epjconf/202431400021
Published online 10 December 2024
  1. J. McGowan, T. Cridge, L.A. Harland-Lang, R.S. Thorne, Approximate N3LO parton distribution functions with theoretical uncertainties: MSHT20aN3LO PDFs, Eur. Phys. J. C 83, 185 (2023), [Erratum: Eur.Phys.J.C 83, 302 (2023)], 2207.04739. 10.1140/epjc/s10052-023-11236-0 [CrossRef] [Google Scholar]
  2. R.D. Ball et al. (NNPDF), The path to N3LO parton distributions, Eur. Phys. J. C 84, 659 (2024), 2402.18635. 10.1140/epjc/s10052-024-12891-7 [CrossRef] [Google Scholar]
  3. J.A.M. Vermaseren, A. Vogt, S. Moch, The Third-order QCD corrections to deep-inelastic scattering by photon exchange, Nucl. Phys. B 724, 3 (2005), hep-ph/0504242. 10.1016/j.nuclphysb.2005.06.020 [CrossRef] [Google Scholar]
  4. S. Moch, J.A.M. Vermaseren, A. Vogt, The Longitudinal structure function at the third order, Phys. Lett. B 606, 123 (2005), hep-ph/0411112. 10.1016/j.physletb.2004.11.063 [CrossRef] [Google Scholar]
  5. S. Moch, M. Rogal, A. Vogt, Differences between charged-current coefficient functions, Nucl. Phys. B 790, 317 (2008), 0708.3731. 10.1016/j.nuclphysb.2007.09.022 [CrossRef] [Google Scholar]
  6. S. Moch, J.A.M. Vermaseren, A. Vogt, Third-order QCD corrections to the charged- current structure function F(3), Nucl. Phys. B 813, 220 (2009), 0812.4168. 10.1016/j.nuclphysb.2009.01.001 [CrossRef] [Google Scholar]
  7. H. Kawamura, N.A. Lo Presti, S. Moch, A. Vogt, On the next-to-next-to-leading order QCD corrections to heavy-quark production in deep-inelastic scattering, Nucl. Phys. B 864, 399 (2012), 1205.5727. 10.1016/j.nuclphysb.2012.07.001 [CrossRef] [Google Scholar]
  8. J. Davies, A. Vogt, S. Moch, J.A.M. Vermaseren, Non-singlet coefficient functions for charged-current deep-inelastic scattering to the third order in QCD, PoS DIS2016, 059 (2016), 1606.08907. 10.22323/1.265.0059 [Google Scholar]
  9. J. Blümlein, P. Marquard, C. Schneider, K. Schonwald, The massless three-loop Wilson coefficients for the deep-inelastic structure functions F2, FL, xF3 and g1, JHEP 11, 156 (2022), 2208.14325. 10.1007/JHEP11(2022)156 [CrossRef] [Google Scholar]
  10. J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel, C. Schneider, K. Schoenwald, The three-loop single-mass heavy flavor corrections to deep-inelastic scattering (2024), 2407.02006 [Google Scholar]
  11. J. Baglio, C. Duhr, B. Mistlberger, R. Szafron, Inclusive production cross sections at N3LO, JHEP 12, 066 (2022), 2209.06138. 10.1007/JHEP12(2022)066 [CrossRef] [Google Scholar]
  12. C. Duhr, F. Dulat, B. Mistlberger, Charged current Drell-Yan production atN3LO, JHEP 11, 143 (2020), 2007.13313. 10.1007/JHEP11(2020)143 [CrossRef] [Google Scholar]
  13. C. Duhr, B. Mistlberger, Lepton-pair production at hadron colliders at N3LO in QCD, JHEP 03, 116 (2022), 2111.10379. 10.1007/JHEP03(2022)116 [CrossRef] [Google Scholar]
  14. X. Chen, T. Gehrmann, N. Glover, A. Huss, T.Z. Yang, H.X. Zhu, Dilepton Rapidity Distribution in Drell-Yan Production to Third Order in QCD, Phys. Rev. Lett. 128, 052001 (2022), 2107.09085. 10.1103/PhysRevLett.128.052001 [CrossRef] [PubMed] [Google Scholar]
  15. X. Chen, T. Gehrmann, N. Glover, A. Huss, T.Z. Yang, H.X. Zhu, Transverse mass distribution and charge asymmetry in W boson production to third order in QCD, Phys. Lett. B 840, 137876 (2023), 2205.11426. 10.1016/j.physletb.2023.137876 [CrossRef] [Google Scholar]
  16. C. Anastasiou, C. Duhr, F. Dulat, F. Herzog, B. Mistlberger, Higgs Boson Gluon-Fusion Production in QCD at Three Loops, Phys. Rev. Lett. 114, 212001 (2015), 1503.06056. 10.1103/PhysRevLett.114.212001 [CrossRef] [PubMed] [Google Scholar]
  17. B. Mistlberger, Higgs boson production at hadron colliders at N3LO in QCD, JHEP 05, 028 (2018), 1802.00833. 10.1007/JHEP05(2018)028 [CrossRef] [Google Scholar]
  18. F. Dulat, B. Mistlberger, A. Pelloni, Precision predictions at N3LO for the Higgs boson rapidity distribution at the LHC, Phys. Rev. D 99, 034004 (2019), 1810.09462. 10.1103/PhysRevD.99.034004 [CrossRef] [Google Scholar]
  19. F.A. Dreyer, A. Karlberg, Vector-Boson Fusion Higgs Production at Three Loops in QCD, Phys. Rev. Lett. 117, 072001 (2016), 1606.00840. 10.1103/Phys-RevLett.117.072001 [CrossRef] [PubMed] [Google Scholar]
  20. L. Cieri, X. Chen, T. Gehrmann, E.W.N. Glover, A. Huss, Higgs boson production at the LHC using the qT subtraction formalism at N3LO QCD, JHEP 02, 096 (2019), 1807.11501. 10.1007/JHEP02(2019)096 [CrossRef] [Google Scholar]
  21. T. Gehrmann, A. Huss, J. Niehues, A. Vogt, D.M. Walker, Jet production in charged- current deep-inelastic scattering to third order in QCD, Phys. Lett. B 792, 182 (2019), 1812.06104. 10.1016/j.physletb.2019.03.003 [CrossRef] [Google Scholar]
  22. J. Currie, T. Gehrmann, E.W.N. Glover, A. Huss, J. Niehues, A. Vogt, N3LO corrections to jet production in deep inelastic scattering using the Projection-to-Born method, JHEP 05, 209 (2018), 1803.09973. 10.1007/JHEP05(2018)209 [CrossRef] [Google Scholar]
  23. M. Aivazis, F.I. Olness, W.K. Tung, Leptoproduction of heavy quarks. 1. General formalism and kinematics of charged current and neutral current production processes, Phys. Rev. D 50, 3085 (1994), hep-ph/9312318. 10.1103/PhysRevD.50.3085 [CrossRef] [PubMed] [Google Scholar]
  24. M. Aivazis, J.C. Collins, F.I. Olness, W.K. Tung, Leptoproduction of heavy quarks. 2. A Unified QCD formulation of charged and neutral current processes from fixed target to collider energies, Phys. Rev. D 50, 3102 (1994), hep-ph/9312319. 10.1103/Phys- RevD.50.3102 [CrossRef] [PubMed] [Google Scholar]
  25. W.K. Tung, S. Kretzer, C. Schmidt, Open heavy flavor production in QCD: Conceptual framework and implementation issues, J. Phys. G 28, 983 (2002), hep-ph/0110247. 10.1088/0954-3899/28/5/321 [CrossRef] [Google Scholar]
  26. M. Kramer, 1, F.I. Olness, D.E. Soper, Treatment of heavy quarks in deeply inelastic scattering, Phys. Rev. D62, 096007 (2000), hep-ph/0003035. 10.1103/Phys- RevD.62.096007 [Google Scholar]
  27. M. Guzzi, P.M. Nadolsky, H.L. Lai, C.P. Yuan, General-Mass Treatment for Deep Inelastic Scattering at Two-Loop Accuracy, Phys. Rev. D 86, 053005 (2012), 1108.5112. 10.1103/PhysRevD.86.053005 [CrossRef] [Google Scholar]
  28. M. Guzzi, P. Nadolsky, L. Reina, D. Wackeroth, K. Xie, A general mass variable flavor number scheme for Z boson production in association with a heavy quark at hadron colliders (2024), 2410.03876 [Google Scholar]
  29. J. Gao, T.J. Hobbs, P.M. Nadolsky, C. Sun, C.P. Yuan, General heavy-flavor mass scheme for charged-current DIS at NNLO and beyond, Phys. Rev. D 105, L011503 (2022), 2107.00460. 10.1103/PhysRevD.105.L011503 [CrossRef] [Google Scholar]
  30. A. Kusina, F. Olness, I. Schienbein, T. Jezo, K. Kovarik, T. Stavreva, J. Yu, Hybrid scheme for heavy flavors: Merging the fixed flavor number scheme and variable flavor number scheme, Phys. Rev. D 88, 074032 (2013), 1306.6553. 10.1103/Phys- RevD.88.074032 [CrossRef] [Google Scholar]
  31. K. Xie, Ph.D. thesis, Southern Methodist U. (2019) [Google Scholar]
  32. K. Xie, J.M. Campbell, P.M. Nadolsky, A general-mass scheme for prompt charm production at hadron colliders, in 28th International Workshop on Deep Inelastic Scattering and Related Subjects (2021), 2108.03741 [Google Scholar]
  33. K. Xie, M. Guzzi, P. Nadolsky, Probing heavy-flavor parton distribution functions at hadron colliders, in Snowmass 2021 (2022), 2203.06207 [Google Scholar]
  34. I. Helenius, H. Paukkunen, Revisiting the D-meson hadroproduction in generalmass variable flavour number scheme, JHEP 05, 196 (2018), 1804.03557. 10.1007/JHEP05(2018)196 [CrossRef] [Google Scholar]
  35. T.J. Hou et al., New CTEQ global analysis of quantum chromodynamics with high- precision data from the LHC, Phys. Rev. D 103, 014013 (2021), 1912.10053. 10.1103/PhysRevD.103.014013 [CrossRef] [Google Scholar]
  36. A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht, M. Schönherr, G. Watt, LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75, 132 (2015), 1412.7420. 10.1140/epjc/s10052-015-3318-8 [CrossRef] [Google Scholar]
  37. K. Xie et al., The Simplified ACOT scheme with Massive Phase Space, https://sacotmps.hepforge.org/ [Google Scholar]
  38. F. Febres Cordero, L. Reina, D. Wackeroth, NLO QCD corrections to Zbb production with massive bottom quarks at the Fermilab Tevatron, Phys. Rev. D 78, 074014 (2008), 0806.0808. 10.1103/PhysRevD.78.074014 [CrossRef] [Google Scholar]
  39. F. Febres Cordero, L. Reina, D. Wackeroth, W- and Z-boson production with a massive bottom-quark pair at the Large Hadron Collider, Phys. Rev. D 80, 034015 (2009), 0906.1923. 10.1103/PhysRevD.80.034015 [CrossRef] [Google Scholar]
  40. D. Figueroa, S. Honeywell, S. Quackenbush, L. Reina, C. Reuschle, D. Wackeroth, Electroweak and QCD corrections to Z-boson production with one b jet in a massive five-flavor scheme, Phys. Rev. D 98, 093002 (2018), 1805.01353. 10.1103/Phys-RevD.98.093002 [CrossRef] [Google Scholar]
  41. E. Witten, Heavy Quark Contributions to Deep Inelastic Scattering, Nucl. Phys. B 104, 445 (1976). 10.1016/0550-3213(76)90111-5 [CrossRef] [Google Scholar]
  42. M. Buza, Y. Matiounine, J. Smith, R. Migneron, W.L. van Neerven, Heavy quark coefficient functions at asymptotic values Q2 » m2, Nucl. Phys. B 472, 611 (1996), hep-ph/9601302. 10.1016/0550-3213(96)00228-3 [CrossRef] [Google Scholar]
  43. M. Buza, Y. Matiounine, J. Smith, W. van Neerven, Charm electroproduction viewed in the variable flavor number scheme versus fixed order perturbation theory, Eur. Phys. J. C 1, 301 (1998), hep-ph/9612398. 10.1007/BF01245820 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.