Open Access
Issue
EPJ Web Conf.
Volume 314, 2024
QCD@Work 2024 - International Workshop on Quantum Chromodynamics - Theory and Experiment
Article Number 00042
Number of page(s) 8
DOI https://doi.org/10.1051/epjconf/202431400042
Published online 10 December 2024
  1. M.M. Aggarwal et al. (STAR), An Experimental Exploration of the QCD Phase Diagram: The Search for the Critical Point and the Onset of De-confinement (2010), 1007.2613 [Google Scholar]
  2. G. Odyniec, RHIC Beam Energy Scan Program: Phase I and II, PoS CPOD 2013, 043 (2013). 10.22323/1.185.0043 [Google Scholar]
  3. A. Bzdak, S. Esumi, V. Koch, J. Liao, M. Stephanov, N. Xu, Mapping the Phases of Quantum Chromodynamics with Beam Energy Scan, Phys. Rept. 853, 1 (2020), 1906.00936. 10.1016/j.physrep.2020.01.005 [CrossRef] [Google Scholar]
  4. L. Du, A. Sorensen, M. Stephanov, The QCD phase diagram and Beam Energy Scan physics: a theory overview (2024), 2402.10183. 10.1142/S021830132430008X [Google Scholar]
  5. D.A. Clarke, P. Dimopoulos, F. Di Renzo, J. Goswami, C. Schmidt, S. Singh, K. Zambello, Searching for the QCD critical endpoint using multi-point Padé approximations (2024), 2405.10196 [Google Scholar]
  6. G. Basar, QCD critical point, Lee-Yang edge singularities, and Padé resummations, Phys. Rev. C 110, 015203 (2024), 2312.06952. 10.1103/PhysRevC.110.015203 [CrossRef] [Google Scholar]
  7. M. Hippert, J. Grefa, T.A. Manning, J. Noronha, J. Noronha-Hostler, I. Portillo Vazquez, C. Ratti, R. Rougemont, M. Trujillo, Bayesian location of the QCD critical point from a holographic perspective (2023), 2309.00579 [Google Scholar]
  8. Y. Lu, F. Gao, Y.X. Liu, J.M. Pawlowski, QCD equation of state and thermodynamic observables from computationally minimal Dyson-Schwinger equations, Phys. Rev. D 110, 014036 (2024), 2310.18383. 10.1103/PhysRevD.110.014036 [CrossRef] [Google Scholar]
  9. A. Pandav (STAR collaboration), Plenary talk at CPOD 2024, https://conferences.lbl.gov/event/1376/contributions/8772/ [Google Scholar]
  10. M.S. Pradeep, M. Stephanov, Maximum Entropy Freeze-Out of Hydrodynamic Fluctuations, Phys. Rev. Lett. 130, 162301 (2023), 2211.09142. 10.1103/Phys-RevLett.130.162301 [CrossRef] [PubMed] [Google Scholar]
  11. V. Vovchenko, V. Koch, C. Shen, Proton number cumulants and correlation functions in Au-Au collisions at sNN=7.7-200 GeV from hydrodynamics, Phys. Rev. C 105, 014904 (2022), 2107.00163. 10.1103/PhysRevC.105.014904 [CrossRef] [Google Scholar]
  12. P. Parotto, M. Bluhm, D. Mroczek, M. Nahrgang, J. Noronha-Hostler, K. Rajagopal, C. Ratti, T. Schäfer, M. Stephanov, QCD equation of state matched to lattice data and exhibiting a critical point singularity, Phys. Rev. C 101, 034901 (2020), 1805.05249. 10.1103/PhysRevC.101.034901 [CrossRef] [Google Scholar]
  13. J.M. Karthein, M.S. Pradeep, K. Rajagopal, M. Stephanov, Y. Yin, Equilibrium expectations for non-Gaussian fluctuations near a QCD critical point, in 21st International Conference on Strangeness in Quark Matter 2024 (2024), 2409.16249 [Google Scholar]
  14. M.A. Stephanov, On the sign of kurtosis near the QCD critical point, Phys. Rev. Lett. 107, 052301 (2011), 1104.1627. 10.1103/PhysRevLett.107.052301 [CrossRef] [PubMed] [Google Scholar]
  15. E. Shuryak, Four-nucleon clustering near the QCD critical point: theory versus experiment (2024), 2405.16617 [Google Scholar]
  16. S. Mukherjee, R. Venugopalan, Y. Yin, Real time evolution of non-Gaussian cumulants in the QCD critical regime, Phys. Rev. C 92, 034912 (2015), 1506.00645. 10.1103/PhysRevC.92.034912 [CrossRef] [Google Scholar]
  17. M. Pradeep, K. Rajagopal, M. Stephanov, Y. Yin, Freezing out fluctuations in Hy- dro+ near the QCD critical point, Phys. Rev. D 106, 036017 (2022), 2204.00639. 10.1103/PhysRevD.106.036017 [CrossRef] [Google Scholar]
  18. M. Stephanov, QCD Critical Point and Hydrodynamic Fluctuations in Relativistic Fluids, Acta Phys. Polon. B 55, 5 (2024), 2403.03255. 10.5506/APhysPolB.55.5-A4 [CrossRef] [Google Scholar]
  19. M. Kahangirwe, S.A. Bass, E. Bratkovskaya, J. Jahan, P. Moreau, P. Parotto, D. Price, C. Ratti, O. Soloveva, M. Stephanov, Finite density QCD equation of state: Critical point and lattice-based T’ expansion, Phys. Rev. D 109, 094046 (2024), 2402.08636. 10.1103/PhysRevD.109.094046 [CrossRef] [Google Scholar]
  20. S. Borsányi, Z. Fodor, J.N. Guenther, R. Kara, S.D. Katz, P. Parotto, A. Pásztor, C. Ratti, K.K. Szabó, Lattice QCD equation of state at finite chemical potential from an alternative expansion scheme, Phys. Rev. Lett. 126, 232001 (2021), 2102.06660. 10.1103/PhysRevLett.126.232001 [CrossRef] [PubMed] [Google Scholar]
  21. M.S. Pradeep, N. Sogabe, M. Stephanov, H.U. Yee, Nonmonotonic specific entropy on the transition line near the QCD critical point, Phys. Rev. C 109, 064905 (2024), 2402.09519. 10.1103/PhysRevC.109.064905 [CrossRef] [Google Scholar]
  22. X. An, G. Basar, M. Stephanov, H.U. Yee, Evolution of Non-Gaussian Hydrodynamic Fluctuations, Phys. Rev. Lett. 127, 072301 (2021), 2009.10742. 10.1103/Phys-RevLett.127.072301 [CrossRef] [PubMed] [Google Scholar]
  23. X. An, G. Basar, M. Stephanov, H.U. Yee, Non-Gaussian fluctuation dynamics in relativistic fluids, Phys. Rev. C 108, 034910 (2023), 2212.14029. 10.1103/Phys-RevC.108.034910 [CrossRef] [Google Scholar]
  24. M.A. Stephanov, Non-Gaussian fluctuations near the QCD critical point, Phys. Rev. Lett. 102, 032301 (2009), 0809.3450. 10.1103/PhysRevLett.102.032301 [CrossRef] [PubMed] [Google Scholar]
  25. B. Ling, M.A. Stephanov, Acceptance dependence of fluctuation measures near the QCD critical point, Phys. Rev. C 93, 034915 (2016), 1512.09125. 10.1103/Phys-RevC.93.034915 [CrossRef] [Google Scholar]
  26. A. Bzdak, V. Koch, N. Strodthoff, Cumulants and correlation functions versus the QCD phase diagram, Phys. Rev. C 95, 054906 (2017), 1607.07375. 10.1103/Phys-RevC.95.054906 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.