Open Access
Issue
EPJ Web Conf.
Volume 315, 2024
International Workshop on Future Linear Colliders (LCWS2024)
Article Number 01005
Number of page(s) 7
Section Physics
DOI https://doi.org/10.1051/epjconf/202431501005
Published online 18 December 2024
  1. A. Einstein, B. Podolsky and N. Rosen, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?. Phys. Rev. 47, 777-780 (1935). https://doi.org/10. 1103/PhysRev.47.777 [CrossRef] [Google Scholar]
  2. S. A. Abel, M. Dittmar and H. Dreiner, Testing locality at colliders via Bell’s inequality?. Phys. Lett. B 280, 304-312 (1992). https://doi.org/10.1016/0370-2693(92)90071-B [CrossRef] [Google Scholar]
  3. M. Genovese, Research on hidden variable theories: A review of recent progresses. Phys. Rep. 413 (6), 319-396 (2005). https://doi.org/10.1016/j.physrep.2005.03.003 [CrossRef] [Google Scholar]
  4. D. Bohm and Y. Aharonov, Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky. Phys. Rev. 108 (4), 1070-1076 (1957). https://doi.org/10.1103/ PhysRev.108.1070 [CrossRef] [Google Scholar]
  5. J. S. Bell, On the Einstein Podolsky Rosen paradox. Physics 1 (3), 195-200 (1964). https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195 [CrossRef] [MathSciNet] [Google Scholar]
  6. J. F. Clauser, M. A. Horne, A. Shimony and R. A. Holt, Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23 (15), 880-884 (1969). https://doi.org/10.1103/PhysRevLett.23.880 [CrossRef] [Google Scholar]
  7. J. F. Clauser and M. A. Horne, Experimental consequences of objective local theories. Phys. Rev. D 10 (2), 526-535 (1974). https://doi.org/10.1103/PhysRevD.10.526 [CrossRef] [Google Scholar]
  8. S. J. Freedman and J. F. Clauser, Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28 (14), 938-941 (1972). https://doi.org/10.1103/PhysRevLett.28.938 [CrossRef] [Google Scholar]
  9. A. Aspect, J. Dalibard and G. Roger, Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49 (25), 1804-1807 (1982). https://doi.org/10.1103/ PhysRevLett.49.1804 [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Fabbrichesi, R. Floreanini and E. Gabrielli, Constraining new physics in entangled two-qubit systems: top-quark, tau-lepton and photon pairs. Eur. Phys. J.C. 83, 162 (2023). https://doi.org/10.1140/epjc/s10052-023-11307-2 [CrossRef] [Google Scholar]
  11. M. M. Altakach, P. Lamba, F. Maltoni, K. Mawatari and K. Sakurai, Quantum information and CP measurement in H → ττ+ at future lepton colliders. Phys. Rev. D 107 (9), 093002 (2023). https://doi.org/10.1103/PhysRevD.107.093002 [CrossRef] [Google Scholar]
  12. FCC collaboration, FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2. Eur. Phys. J. Special Topics 228 (2), 261-623 (2019). https://doi.org/10.1140/epjst/e2019-900045-4 [CrossRef] [Google Scholar]
  13. The DELPHES 3 collaboration, J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens and M. Selvaggi, DELPHES 3: a modular framework for fast simulation of a generic collider experiment. J. High Energ. Phys. 2014, 57 (2014). https://doi.org/10.1007/JHEP02(2014)057. arXiv:1307.6346 [hep-ex] [Google Scholar]
  14. R. Horodecki, P. Horodecki and M. Horodecki, Violating Bell inequality by mixed spin-½ states: necessary and sufficient condition. Phys. Lett. A 200 (5), 340-344 (1995). https://doi.org/10.1016/0375-9601(95)00214-N [CrossRef] [Google Scholar]
  15. B. K. Bullock, K. Hagiwara and A. D. Martin, Tau polarization and its correaltions as a probe of new physics. Nuc. Phys. B 395 (3), 499-533. https://doi.org/10.1016/0550-3213(93)90045-Q [Google Scholar]
  16. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli and M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. J. High Energ. Phys. 2014 (7), 79 (2014). https://doi.org/10.1007/JHEP07(2014)079. arXiv: arXiv:1405.0301 [hep-ph] [CrossRef] [Google Scholar]
  17. C. Bierlich, S. Chakraborty, N. Desai, L. Gellersen, I. Helenius, P. Ilten, L. Lönnblad, S. Mrenna, S. Prestel, C. T. Preuss, T. Sjöstrand, P. Skands, M. Utheim and R. Verheyen, A comprehensive guide to the physics and usage of PYTHIA 8.3. SciPost Phys Codebases 8 (2022). https://doi.org/10.21468/SciPostPhysCodeb.8. arXiv:2203.11601 [hep-ph] [Google Scholar]
  18. S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024). https://doi.org/10.1103/PhysRevD.110.030001 [CrossRef] [Google Scholar]
  19. ATLAS Collaboration, The ATLAS Tau Trigger in Run 2. ATLAS-CONF-2017, ATLAS-CONF-2017-061 (2017) [Google Scholar]
  20. K. Hagiwara, T. Li, K. Mawatari and J. Nakamura, TauDecay: a library to simulate polarized tau decays via FeynRules and MadGraph5. Eur. Phys. J. C 73, 2489 (2013). https://doi.org/10.1140/epjc/s10052-013-2489-4 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.