Open Access
Issue
EPJ Web Conf.
Volume 315, 2024
International Workshop on Future Linear Colliders (LCWS2024)
Article Number 01007
Number of page(s) 9
Section Physics
DOI https://doi.org/10.1051/epjconf/202431501007
Published online 18 December 2024
  1. Shinya Kanemura and Yushi Mura. Loop induced H±W±Z vertices in the general two Higgs doublet model with CP violation. JHEP, 10:041, 2024. [CrossRef] [Google Scholar]
  2. Georges Aad et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B, 716:1–29, 2012. [CrossRef] [Google Scholar]
  3. Serguei Chatrchyan et al. Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC. Phys. Lett. B, 716:30–61, 2012. [CrossRef] [Google Scholar]
  4. A. D. Sakharov. Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe. Pisma Zh. Eksp. Teor. Fiz., 5:32–35, 1967. [Google Scholar]
  5. Patrick Huet and Eric Sather. Electroweak baryogenesis and standard model CP violation. Phys. Rev. D, 51:379–394, 1995. [CrossRef] [PubMed] [Google Scholar]
  6. V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov. On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe. Phys. Lett. B, 155:36, 1985. [CrossRef] [Google Scholar]
  7. Neil Turok and John Zadrozny. Electroweak baryogenesis in the two doublet model. Nucl. Phys. B, 358:471–493, 1991. [CrossRef] [Google Scholar]
  8. James M. Cline, Kimmo Kainulainen, and Axel P. Vischer. Dynamics of two Higgs doublet CP violation and baryogenesis at the electroweak phase transition. Phys. Rev. D, 54:2451–2472, 1996. [CrossRef] [PubMed] [Google Scholar]
  9. Lars Fromme, Stephan J. Huber, and Michael Seniuch. Baryogenesis in the two-Higgs doublet model. JHEP, 11:038, 2006. [CrossRef] [Google Scholar]
  10. James M. Cline, Kimmo Kainulainen, and Michael Trott. Electroweak Baryogenesis in Two Higgs Doublet Models and B meson anomalies. JHEP, 11:089, 2011. [CrossRef] [Google Scholar]
  11. Sean Tulin and Peter Winslow. Anomalous B meson mixing and baryogenesis. Phys. Rev. D, 84:034013, 2011. [CrossRef] [Google Scholar]
  12. Tao Liu, Michael J. Ramsey-Musolf, and Jing Shu. Electroweak Beautygenesis: From b \to s CP-violation to the Cosmic Baryon Asymmetry. Phys. Rev. Lett., 108:221301, 2012. [CrossRef] [PubMed] [Google Scholar]
  13. M. Ahmadvand. Baryogenesis within the two-Higgs-doublet model in the Electroweak scale. Int. J. Mod. Phys. A, 29(20):1450090, 2014. [CrossRef] [Google Scholar]
  14. Cheng-Wei Chiang, Kaori Fuyuto, and Eibun Senaha. Electroweak Baryogenesis with Lepton Flavor Violation. Phys. Lett. B, 762:315–320, 2016. [CrossRef] [Google Scholar]
  15. Huai-Ke Guo, Ying-Ying Li, Tao Liu, Michael Ramsey-Musolf, and Jing Shu. Lepton-Flavored Electroweak Baryogenesis. Phys. Rev. D, 96(11):115034, 2017. [CrossRef] [Google Scholar]
  16. Kaori Fuyuto, Wei-Shu Hou, and Eibun Senaha. Electroweak baryogenesis driven by extra top Yukawa couplings. Phys. Lett. B, 776:402–406, 2018. [CrossRef] [Google Scholar]
  17. G. C. Dorsch, S. J. Huber, T. Konstandin, and J. M. No. A Second Higgs Doublet in the Early Universe: Baryogenesis and Gravitational Waves. JCAP, 05:052, 2017. [CrossRef] [Google Scholar]
  18. Tanmoy Modak and Eibun Senaha. Electroweak baryogenesis via bottom transport. Phys. Rev. D, 99(11):115022, 2019. [CrossRef] [Google Scholar]
  19. Philipp Basler, Lisa Biermann, Margarete Mühlleitner, and Jonas Müller. Electroweak baryogenesis in the CP-violating two-Higgs doublet model. Eur. Phys. J. C, 83(1):57, 2023. [CrossRef] [Google Scholar]
  20. Kazuki Enomoto, Shinya Kanemura, and Yushi Mura. Electroweak baryogenesis in aligned two Higgs doublet models. JHEP, 01:104, 2022. [CrossRef] [Google Scholar]
  21. Kazuki Enomoto, Shinya Kanemura, and Yushi Mura. New benchmark scenarios of electroweak baryogenesis in aligned two Higgs double models. JHEP, 09:121, 2022. [CrossRef] [Google Scholar]
  22. Shinya Kanemura and Yushi Mura. Electroweak baryogenesis via top-charm mixing. JHEP, 09:153, 2023. [CrossRef] [Google Scholar]
  23. Mayumi Aoki and Hiroto Shibuya. Electroweak baryogenesis between broken phases in multi-step phase transition. Phys. Lett. B, 843:138041, 2023. [CrossRef] [Google Scholar]
  24. J. A. Grifols and A. Mendez. The WZH± Coupling in S U(2) U(1) Gauge Models. Phys. Rev. D, 22:1725, 1980. [CrossRef] [Google Scholar]
  25. Thomas G. Rizzo. One Loop Induced WZH Coupling in the Two Higgs Doublet Model. Mod. Phys. Lett. A, 4:2757, 1989. [CrossRef] [Google Scholar]
  26. P. Sikivie, Leonard Susskind, Mikhail B. Voloshin, and Valentin I. Zakharov. Isospin Breaking in Technicolor Models. Nucl. Phys. B, 173:189–207, 1980. [CrossRef] [Google Scholar]
  27. Howard E. Haber and Alex Pomarol. Constraints from global symmetries on radiative corrections to the Higgs sector. Phys. Lett. B, 302:435–441, 1993. [CrossRef] [Google Scholar]
  28. Alex Pomarol and Roberto Vega. Constraints on CP violation in the Higgs sector from the rho parameter. Nucl. Phys. B, 413:3–15, 1994. [CrossRef] [Google Scholar]
  29. Howard E. Haber and Deva O’Neil. Basis-independent methods for the two-Higgs-doublet model III: The CP-conserving limit, custodial symmetry, and the oblique parameters S, T, U. Phys. Rev. D, 83:055017, 2011. [CrossRef] [Google Scholar]
  30. J. M. Gerard and M. Herquet. A Twisted custodial symmetry in the two-Higgs-doublet model. Phys. Rev. Lett., 98:251802, 2007. [CrossRef] [PubMed] [Google Scholar]
  31. B. Grzadkowski, M. Maniatis, and Jose Wudka. The bilinear formalism and the custodial symmetry in the two-Higgs-doublet model. JHEP, 11:030, 2011. [CrossRef] [Google Scholar]
  32. Shinya Kanemura, Yasuhiro Okada, Hiroyuki Taniguchi, and Koji Tsumura. Indirect bounds on heavy scalar masses of the two-Higgs-doublet model in light of recent Higgs boson searches. Phys. Lett. B, 704:303–307, 2011. [CrossRef] [Google Scholar]
  33. Masashi Aiko and Shinya Kanemura. New scenario for aligned Higgs couplings originated from the twisted custodial symmetry at high energies. JHEP, 02:046, 2021. [CrossRef] [Google Scholar]
  34. Michel Capdequi Peyranere, Howard E. Haber, and Paulo Irulegui. H+- —> W+- gamma and H+- —> W+- Z in two Higgs doublet models. 1. The Large fermion mass limit. Phys. Rev. D, 44:191–201, 1991. [CrossRef] [PubMed] [Google Scholar]
  35. Shinya Kanemura. Enhancement of loop induced H±W±Z0 vertex in two Higgs doublet model. Phys. Rev. D, 61:095001, 2000. [CrossRef] [Google Scholar]
  36. J. L. Diaz-Cruz, J. Hernandez-Sanchez, and J. J. Toscano. An Effective Lagrangian description of charged Higgs decays H+W+γ, W+Z and W+ h0. Phys. Lett. B, 512:339–348, 2001. [CrossRef] [Google Scholar]
  37. Abdesslam Arhrib, Rachid Benbrik, and Mohamed Chabab. Charged Higgs bosons decays H±W± (γ, Z ) revisited. J. Phys. G, 34:907–928, 2007. [CrossRef] [Google Scholar]
  38. Gauhar Abbas, Diganta Das, and Monalisa Patra. Loop induced H±W±Z decays in the aligned two-Higgs-doublet model. Phys. Rev. D, 98(11):115013, 2018. [CrossRef] [Google Scholar]
  39. Masashi Aiko, Shinya Kanemura, and Kodai Sakurai. Radiative corrections to decays of charged Higgs bosons in two Higgs doublet models. Nucl. Phys. B, 973:115581, 2021. [CrossRef] [Google Scholar]
  40. A. Mendez and A. Pomarol. One loop induced H+W+Z vertex in the minimal super-symmetry model. Nucl. Phys. B, 349:369–380, 1991. [CrossRef] [Google Scholar]
  41. Abdesslam Arhrib, Rachid Benbrik, and Mohamed Chabab. Left-right squarks mixings effects in charged Higgs bosons decays H±W± (γ, Z) in the MSSM. Phys. Lett. B, 644:248–255, 2007. [CrossRef] [Google Scholar]
  42. Abdesslam Arhrib, Rachid Benbrik, Mohamed Chabab, Wei Ting Chang, and Tzu-Chiang Yuan. CP violation in Charged Higgs Bosons decays H± W± (γ, Z) in the Minimal Supersymmetric Standard Model (MSSM). Int. J. Mod. Phys. A, 22:6022–6032, 2007. [CrossRef] [Google Scholar]
  43. Sacha Davidson and Howard E. Haber. Basis-independent methods for the two-Higgs-doublet model. Phys. Rev. D, 72:035004, 2005. [Erratum: Phys.Rev.D 72, 099902 (2005)]. [CrossRef] [Google Scholar]
  44. Howard E. Haber and Deva O’Neil. Basis-independent methods for the two-Higgs-doublet model. II. The Significance of tanβ. Phys. Rev. D, 74:015018, 2006. [Erratum: Phys.Rev.D 74, 059905 (2006)]. [CrossRef] [Google Scholar]
  45. F. J. Botella and Joao P. Silva. Jarlskog - like invariants for theories with scalars and fermions. Phys. Rev. D, 51:3870–3875, 1995. [CrossRef] [PubMed] [Google Scholar]
  46. John F. Gunion and Howard E. Haber. Conditions for CP-violation in the general two-Higgs-doublet model. Phys. Rev. D, 72:095002, 2005. [CrossRef] [Google Scholar]
  47. Benjamin W. Lee, C. Quigg, and H. B. Thacker. Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass. Phys. Rev. D, 16:1519, 1977. [Google Scholar]
  48. John F. Gunion, Howard E. Haber, Gordon L. Kane, and Sally Dawson. The Higgs Hunter’s Guide, volume 80. 2000. [Google Scholar]
  49. Shinya Kanemura, Takahiro Kubota, and Eiichi Takasugi. Lee-Quigg-Thacker bounds for Higgs boson masses in a two doublet model. Phys. Lett. B, 313:155–160, 1993. [CrossRef] [Google Scholar]
  50. Andrew G. Akeroyd, Abdesslam Arhrib, and El-Mokhtar Naimi. Note on tree level unitarity in the general two Higgs doublet model. Phys. Lett. B, 490:119–124, 2000. [CrossRef] [Google Scholar]
  51. I. F. Ginzburg and I. P. Ivanov. Tree-level unitarity constraints in the most general 2HDM. Phys. Rev. D, 72:115010, 2005. [CrossRef] [Google Scholar]
  52. Shinya Kanemura and Kei Yagyu. Unitarity bound in the most general two Higgs doublet model. Phys. Lett. B, 751:289–296, 2015. [CrossRef] [Google Scholar]
  53. K. G. Klimenko. On Necessary and Sufficient Conditions for Some Higgs Potentials to Be Bounded From Below. Theor. Math. Phys., 62:58–65, 1985. [CrossRef] [Google Scholar]
  54. Marc Sher. Electroweak Higgs Potentials and Vacuum Stability. Phys. Rept., 179:273–418, 1989. [CrossRef] [Google Scholar]
  55. Shuquan Nie and Marc Sher. Vacuum stability bounds in the two Higgs doublet model. Phys. Lett. B, 449:89–92, 1999. [CrossRef] [Google Scholar]
  56. Shinya Kanemura, Takashi Kasai, and Yasuhiro Okada. Mass bounds of the lightest CP even Higgs boson in the two Higgs doublet model. Phys. Lett. B, 471:182–190, 1999. [CrossRef] [Google Scholar]
  57. P. M. Ferreira, R. Santos, and A. Barroso. Stability of the tree-level vacuum in two Higgs doublet models against charge or CP spontaneous violation. Phys. Lett. B, 603:219–229, 2004. [Erratum: Phys.Lett.B 629, 114–114 (2005)]. [CrossRef] [Google Scholar]
  58. Henning Bahl, Marcela Carena, Nina M. Coyle, Aurora Ireland, and Carlos E. M. Wagner. New tools for dissecting the general 2HDM. JHEP, 03:165, 2023. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.