Open Access
Issue
EPJ Web Conf.
Volume 315, 2024
International Workshop on Future Linear Colliders (LCWS2024)
Article Number 01012
Number of page(s) 13
Section Physics
DOI https://doi.org/10.1051/epjconf/202431501012
Published online 18 December 2024
  1. N. Aghanim et al. (Planck), Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], 1807.06209. 10.1051/0004-6361/201833910 [CrossRef] [EDP Sciences] [Google Scholar]
  2. V.A. Kuzmin, V.A. Rubakov, M.E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155, 36 (1985). 10.1016/0370-2693(85)91028-7 [CrossRef] [Google Scholar]
  3. A.D. Sakharov, Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5, 32 (1967). 10.1070/PU1991v034n05ABEH002497 [Google Scholar]
  4. K. Kajantie, M. Laine, K. Rummukainen, M.E. Shaposhnikov, Is there a hot electroweak phase transition at mH mW ?, Phys. Rev. Lett. 77, 2887 (1996), hep-ph/9605288. 10.1103/PhysRevLett.77.2887 [CrossRef] [PubMed] [Google Scholar]
  5. M. D’Onofrio, K. Rummukainen, A. Tranberg, Sphaleron Rate in the Minimal Standard Model, Phys. Rev. Lett. 113, 141602 (2014), 1404.3565. 10.1103/Phys-RevLett.113.141602 [CrossRef] [PubMed] [Google Scholar]
  6. M. D’Onofrio, K. Rummukainen, Standard model cross-over on the lattice, Phys. Rev. D 93, 025003 (2016), 1508.07161. 10.1103/PhysRevD.93.025003 [CrossRef] [Google Scholar]
  7. W. Buchmuller, D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268, 621 (1986). 10.1016/0550-3213(86)90262-2 [CrossRef] [Google Scholar]
  8. K. Hagiwara, S. Ishihara, R. Szalapski, D. Zeppenfeld, Low-energy effects of new interactions in the electroweak boson sector, Phys. Rev. D 48, 2182 (1993). 10.1103/Phys-RevD.48.2182 [CrossRef] [PubMed] [Google Scholar]
  9. B. Grzadkowski, M. Iskrzynski, M. Misiak, J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10, 085 (2010), 1008.4884. 10.1007/JHEP10(2010)085 [CrossRef] [Google Scholar]
  10. F. Feruglio, The Chiral approach to the electroweak interactions, Int. J. Mod. Phys. A 8, 4937 (1993), hep-ph/9301281. 10.1142/S0217751X93001946 [CrossRef] [Google Scholar]
  11. R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin, J. Yepes, The Effective Chiral Lagrangian for a Light Dynamical ”Higgs Particle”, Phys. Lett. B 722, 330 (2013), [Erratum: Phys.Lett.B 726, 926 (2013)], 1212.3305. 10.1016/j.physletb.2013.04.037 [CrossRef] [Google Scholar]
  12. I. Brivio, T. Corbett, O.J.P. Éboli, M.B. Gavela, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, L. Merlo, S. Rigolin, Disentangling a dynamical Higgs, JHEP 03, 024 (2014), 1311.1823. 10.1007/JHEP03(2014)024 [CrossRef] [Google Scholar]
  13. G. Buchalla, O. Catà, C. Krause, Complete Electroweak Chiral Lagrangian with a Light Higgs at NLO, Nucl. Phys. B 880, 552 (2014), [Erratum: Nucl.Phys.B 913, 475–478 (2016)], 1307.5017. 10.1016/j.nuclphysb.2014.01.018 [CrossRef] [Google Scholar]
  14. G. Buchalla, O. Cata, A. Celis, M. Knecht, C. Krause, Complete One-Loop Renormalization of the Higgs-Electroweak Chiral Lagrangian, Nucl. Phys. B 928, 93 (2018), 1710.06412. 10.1016/j.nuclphysb.2018.01.009 [CrossRef] [Google Scholar]
  15. A. Falkowski, R. Rattazzi, Which EFT, JHEP 10, 255 (2019), 1902.05936. 10.1007/JHEP10(2019)255 [CrossRef] [Google Scholar]
  16. T. Cohen, N. Craig, X. Lu, D. Sutherland, Is SMEFT Enough?, JHEP 03, 237 (2021), 2008.08597. 10.1007/JHEP03(2021)237 [CrossRef] [Google Scholar]
  17. H. Sun, M.L. Xiao, J.H. Yu, Complete NLO operators in the Higgs effective field theory, JHEP 05, 043 (2023), 2206.07722. 10.1007/JHEP05(2023)043 [CrossRef] [Google Scholar]
  18. H. Sun, M.L. Xiao, J.H. Yu, Complete NNLO operator bases in Higgs effective field theory, JHEP 04, 086 (2023), 2210.14939. 10.1007/JHEP04(2023)086 [CrossRef] [Google Scholar]
  19. I. Banta, T. Cohen, N. Craig, X. Lu, D. Sutherland, Non-decoupling new particles, JHEP 02, 029 (2022), 2110.02967. 10.1007/JHEP02(2022)029 [CrossRef] [Google Scholar]
  20. I. Banta, A strongly first-order electroweak phase transition from Loryons, JHEP 06, 099 (2022), 2202.04608. 10.1007/JHEP06(2022)099 [CrossRef] [Google Scholar]
  21. G. Buchalla, F. König, C. Müller-Salditt, F. Pandler, Two-Higgs Doublet Model Matched to Nonlinear Effective Theory (2023), 2312.13885. [Google Scholar]
  22. S. Kanemura, R. Nagai, M. Tanaka, Electroweak phase transition in the nearly aligned Higgs effective field theory, JHEP 06, 027 (2022), 2202.12774. 10.1007/JHEP06(2022)027 [CrossRef] [Google Scholar]
  23. S. Kanemura, R. Nagai, A new Higgs effective field theory and the new no-lose theorem, JHEP 03, 194 (2022), 2111.12585. 10.1007/JHEP03(2022)194 [CrossRef] [Google Scholar]
  24. C. Grojean, G. Servant, J.D. Wells, First-order electroweak phase transition in the standard model with a low cutoff, Phys. Rev. D 71, 036001 (2005), hep-ph/0407019. 10.1103/PhysRevD.71.036001 [CrossRef] [Google Scholar]
  25. S. Kanemura, Y. Okada, E. Senaha, Electroweak baryogenesis and quantum corrections to the triple Higgs boson coupling, Phys. Lett. B 606, 361 (2005), hep-ph/0411354. 10.1016/j.physletb.2004.12.004 [CrossRef] [Google Scholar]
  26. M. Kakizaki, S. Kanemura, T. Matsui, Gravitational waves as a probe of extended scalar sectors with the first order electroweak phase transition, Phys. Rev. D 92, 115007 (2015), 1509.08394. 10.1103/PhysRevD.92.115007 [CrossRef] [Google Scholar]
  27. K. Hashino, M. Kakizaki, S. Kanemura, T. Matsui, Synergy between measurements of gravitational waves and the triple-Higgs coupling in probing the first-order electroweak phase transition, Phys. Rev. D 94, 015005 (2016), 1604.02069. 10.1103/Phys-RevD.94.015005 [CrossRef] [Google Scholar]
  28. M.S. Turner, E.J. Weinberg, L.M. Widrow, Bubble nucleation in first order inflation and other cosmological phase transitions, Phys. Rev. D 46, 2384 (1992). 10.1103/Phys-RevD.46.2384 [CrossRef] [PubMed] [Google Scholar]
  29. C. Grojean, G. Servant, Gravitational Waves from Phase Transitions at the Electroweak Scale and Beyond, Phys. Rev. D 75, 043507 (2007), hep-ph/0607107. 10.1103/Phys-RevD.75.043507 [CrossRef] [Google Scholar]
  30. K. Hashino, R. Jinno, M. Kakizaki, S. Kanemura, T. Takahashi, M. Takimoto, Selecting models of first-order phase transitions using the synergy between collider and gravitational-wave experiments, Phys. Rev. D 99, 075011 (2019), 1809.04994. 10.1103/PhysRevD.99.075011 [CrossRef] [Google Scholar]
  31. C. Caprini et al., Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions, JCAP 04, 001 (2016), 1512.06239. 10.1088/1475-7516/2016/04/001 [Google Scholar]
  32. J.M. Cline, A. Friedlander, D.M. He, K. Kainulainen, B. Laurent, D. Tucker-Smith, Baryogenesis and gravity waves from a UV-completed electroweak phase transition, Phys. Rev. D 103, 123529 (2021), 2102.12490. 10.1103/PhysRevD.103.123529 [CrossRef] [Google Scholar]
  33. P. Amaro-Seoane et al. (LISA), Laser Interferometer Space Antenna (2017), 1702.00786. [Google Scholar]
  34. S. Kawamura et al., The Japanese space gravitational wave antenna: DECIGO, Class. Quant. Grav. 28, 094011 (2011). 10.1088/0264-9381/28/9/094011 [CrossRef] [Google Scholar]
  35. K. Hashino, S. Kanemura, T. Takahashi, Primordial black holes as a probe of strongly first-order electroweak phase transition, Phys. Lett. B 833, 137261 (2022), 2111.13099. 10.1016/j.physletb.2022.137261 [CrossRef] [Google Scholar]
  36. J. Liu, L. Bian, R.G. Cai, Z.K. Guo, S.J. Wang, Primordial black hole production during first-order phase transitions, Phys. Rev. D 105, L021303 (2022), 2106.05637. 10.1103/PhysRevD.105.L021303 [CrossRef] [Google Scholar]
  37. K. Hashino, S. Kanemura, T. Takahashi, M. Tanaka, Probing first-order electroweak phase transition via primordial black holes in the effective field theory, Phys. Lett. B 838, 137688 (2023), 2211.16225. 10.1016/j.physletb.2023.137688 [CrossRef] [Google Scholar]
  38. H. Niikura et al., Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations, Nature Astron. 3, 524 (2019), 1701.02151. 10.1038/s41550-019-0723-1 [CrossRef] [Google Scholar]
  39. H. Niikura, M. Takada, S. Yokoyama, T. Sumi, S. Masaki, Constraints on Earth-mass primordial black holes from OGLE 5-year microlensing events, Phys. Rev. D 99, 083503 (2019), 1901.07120. 10.1103/PhysRevD.99.083503 [NASA ADS] [CrossRef] [Google Scholar]
  40. I. Kondo, T. Sumi, N. Koshimoto, N.J. Rattenbury, D. Suzuki, D.P. Bennett, Prediction of planet yields by the prime-focus infrared microlensing experiment microlensing survey, The Astronomical Journal 165, 254 (2023). 10.3847/1538-3881/acccf9 [CrossRef] [Google Scholar]
  41. J. Fardeen, P. McGill, S.E. Perkins, W.A. Dawson, N.S. Abrams, J.R. Lu, M.F. Ho, S. Bird, Astrometric microlensing by primordial black holes with the roman space telescope (2023), 2312.13249. [Google Scholar]
  42. R.R. Florentino, S. Kanemura, M. Tanaka, Exploring loop-induced first-order electroweak phase transition in the Higgs effective field theory, Phys. Lett. B 856, 138940 (2024), 2406.03957. 10.1016/j.physletb.2024.138940 [CrossRef] [Google Scholar]
  43. A. Arhrib, M. Capdequi Peyranere, W. Hollik, S. Penaranda, Higgs decays in the two Higgs doublet model: Large quantum effects in the decoupling regime, Phys. Lett. B 579, 361 (2004), hep-ph/0307391. 10.1016/j.physletb.2003.10.006 [CrossRef] [Google Scholar]
  44. M. Aoki, S. Kanemura, K. Tsumura, K. Yagyu, Models of Yukawa interaction in the two Higgs doublet model, and their collider phenomenology, Phys. Rev. D 80, 015017 (2009), 0902.4665. 10.1103/PhysRevD.80.015017 [CrossRef] [Google Scholar]
  45. P. Posch, Enhancement of h —> gamma gamma in the Two Higgs Doublet Model Type I, Phys. Lett. B 696, 447 (2011), 1001.1759. 10.1016/j.physletb.2011.01.003 [CrossRef] [Google Scholar]
  46. A. Arhrib, R. Benbrik, N. Gaur, H → γγ in Inert Higgs Doublet Model, Phys. Rev. D 85, 095021 (2012), 1201.2644. 10.1103/PhysRevD.85.095021 [CrossRef] [Google Scholar]
  47. C.W. Chiang, K. Yagyu, Higgs boson decays to γγ and Zγ in models with Higgs extensions, Phys. Rev. D 87, 033003 (2013), 1207.1065. 10.1103/PhysRevD.87.033003 [CrossRef] [Google Scholar]
  48. D. Fontes, J.C. Romão, J.P. Silva, h → Zγ in the complex two Higgs doublet model, JHEP 12, 043 (2014), 1408.2534. 10.1007/JHEP12(2014)043 [CrossRef] [Google Scholar]
  49. S. Kanemura, M. Kikuchi, K. Yagyu, Radiative corrections to the Yukawa coupling constants in two Higgs doublet models, Phys. Lett. B 731, 27 (2014), 1401.0515. 10.1016/j.physletb.2014.02.022 [CrossRef] [Google Scholar]
  50. S. Kanemura, K. Tsumura, K. Yagyu, H. Yokoya, Fingerprinting nonminimal Higgs sectors, Phys. Rev. D 90, 075001 (2014), 1406.3294. 10.1103/PhysRevD.90.075001 [CrossRef] [Google Scholar]
  51. A. Arhrib, R. Benbrik, J. El Falaki, A. Jueid, Radiative corrections to the Triple Higgs Coupling in the Inert Higgs Doublet Model, JHEP 12, 007 (2015), 1507.03630. 10.1007/JHEP12(2015)007 [Google Scholar]
  52. S. Kanemura, M. Kikuchi, K. Yagyu, Fingerprinting the extended Higgs sector using one-loop corrected Higgs boson couplings and future precision measurements, Nucl. Phys. B 896, 80 (2015), 1502.07716. 10.1016/j.nuclphysb.2015.04.015 [CrossRef] [Google Scholar]
  53. K. Hashino, S. Kanemura, Y. Orikasa, Discriminative phenomenological features of scale invariant models for electroweak symmetry breaking, Phys. Lett. B 752, 217 (2016), 1508.03245. 10.1016/j.physletb.2015.11.044 [CrossRef] [Google Scholar]
  54. S. Kanemura, M. Kikuchi, K. Sakurai, Testing the dark matter scenario in the inert doublet model by future precision measurements of the Higgs boson couplings, Phys. Rev. D 94, 115011 (2016), 1605.08520. 10.1103/PhysRevD.94.115011 [CrossRef] [Google Scholar]
  55. E. Senaha, Radiative Corrections to Triple Higgs Coupling and Electroweak Phase Transition: Beyond One-loop Analysis, Phys. Rev. D 100, 055034 (2019), 1811.00336. 10.1103/PhysRevD.100.055034 [CrossRef] [Google Scholar]
  56. J. Braathen, S. Kanemura, M. Shimoda, Two-loop analysis of classically scaleinvariant models with extended Higgs sectors, JHEP 03, 297 (2021), 2011.07580. 10.1007/JHEP03(2021)297 [CrossRef] [Google Scholar]
  57. R.R. Florentino, J.C. Romão, J.P. Silva, Off diagonal charged scalar couplings with the Z boson: Zee-type models as an example, Eur. Phys. J. C 81, 1148 (2021), 2106.08332. 10.1140/epjc/s10052-021-09956-2 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  58. G. Degrassi, P. Slavich, On the two-loop BSM corrections to h → γγ in the aligned THDM, Eur. Phys. J. C 83, 941 (2023), 2307.02476. 10.1140/epjc/s10052-023-12097-3 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  59. M. Aiko, J. Braathen, S. Kanemura, Leading two-loop corrections to the Higgs diphoton decay in the Inert Doublet Model (2023), 2307.14976. [Google Scholar]
  60. M. Aiko, S. Kanemura, M. Kikuchi, K. Sakurai, K. Yagyu, H-COUP Version 3: A program for one-loop corrected decays of any Higgs bosons in non-minimal Higgs models (2023), 2311.15892. [Google Scholar]
  61. A.G. Akeroyd, C.W. Chiang, Phenomenology of Large Mixing for the CP-even Neutral Scalars of the Higgs Triplet Model, Phys. Rev. D 81, 115007 (2010), 1003.3724. 10.1103/PhysRevD.81.115007 [CrossRef] [Google Scholar]
  62. A. Arhrib, R. Benbrik, M. Chabab, G. Moultaka, L. Rahili, Higgs boson decay into 2 photons in the type~II Seesaw Model, JHEP 04, 136 (2012), 1112.5453. 10.1007/JHEP04(2012)136 [CrossRef] [Google Scholar]
  63. M. Aoki, S. Kanemura, M. Kikuchi, K. Yagyu, Renormalization of the Higgs Sector in the Triplet Model, Phys. Lett. B 714, 279 (2012), 1204.1951. 10.1016/j.physletb.2012.07.016 [CrossRef] [Google Scholar]
  64. S. Kanemura, K. Yagyu, Radiative corrections to electroweak parameters in the Higgs triplet model and implication with the recent Higgs boson searches, Phys. Rev. D 85, 115009 (2012), 1201.6287. 10.1103/PhysRevD.85.115009 [CrossRef] [Google Scholar]
  65. M. Aoki, S. Kanemura, M. Kikuchi, K. Yagyu, Radiative corrections to the Higgs boson couplings in the triplet model, Phys. Rev. D 87, 015012 (2013), 1211.6029. 10.1103/PhysRevD.87.015012 [CrossRef] [Google Scholar]
  66. F. Arbabifar, S. Bahrami, M. Frank, Neutral Higgs Bosons in the Higgs Triplet Model with nontrivial mixing, Phys. Rev. D 87, 015020 (2013), 1211.6797. 10.1103/Phys-RevD.87.015020 [CrossRef] [Google Scholar]
  67. M.A. Shifman, A.I. Vainshtein, M.B. Voloshin, V.I. Zakharov, Low-Energy Theorems for Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys. 30, 711 (1979). [Google Scholar]
  68. A. Katz, M. Perelstein, Higgs Couplings and Electroweak Phase Transition, JHEP 07, 108 (2014), 1401.1827. 10.1007/JHEP07(2014)108 [CrossRef] [Google Scholar]
  69. S. Kanemura, M. Kikuchi, K. Yagyu, Radiative corrections to the Higgs boson couplings in the model with an additional real singlet scalar field, Nucl. Phys. B 907, 286 (2016), 1511.06211. 10.1016/j.nuclphysb.2016.04.005 [CrossRef] [Google Scholar]
  70. S. Kanemura, M. Kikuchi, K. Yagyu, One-loop corrections to the Higgs self-couplings in the singlet extension, Nucl. Phys. B 917, 154 (2017), 1608.01582. 10.1016/j.nuclphysb.2017.02.004 [CrossRef] [Google Scholar]
  71. J. Braathen, S. Kanemura, On two-loop corrections to the Higgs trilinear coupling in models with extended scalar sectors, Phys. Lett. B 796, 38 (2019), 1903.05417. 10.1016/j.physletb.2019.07.021 [CrossRef] [Google Scholar]
  72. J. Braathen, S. Kanemura, Leading two-loop corrections to the Higgs boson self-couplings in models with extended scalar sectors, Eur. Phys. J. C 80, 227 (2020), 1911.11507. 10.1140/epjc/s10052-020-7723-2 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  73. H. Georgi, M. Machacek, DOUBLY CHARGED HIGGS BOSONS, Nucl. Phys. B 262, 463 (1985). 10.1016/0550-3213(85)90325-6 [CrossRef] [Google Scholar]
  74. C.W. Chiang, A.L. Kuo, K. Yagyu, Radiative corrections to Higgs couplings with weak gauge bosons in custodial multi-Higgs models, Phys. Lett. B 774, 119 (2017), 1707.04176. 10.1016/j.physletb.2017.09.061 [CrossRef] [Google Scholar]
  75. C.W. Chiang, A.L. Kuo, K. Yagyu, One-loop renormalized Higgs boson vertices in the Georgi-Machacek model, Phys. Rev. D 98, 013008 (2018), 1804.02633. 10.1103/PhysRevD.98.013008 [CrossRef] [Google Scholar]
  76. G. Aad et al. (ATLAS), Constraints on the Higgs boson self-coupling from single- and double-Higgs production with the ATLAS detector using pp collisions at s=13 TeV, Phys. Lett. B 843, 137745 (2023), 2211.01216. 10.1016/j.physletb.2023.137745 [CrossRef] [Google Scholar]
  77. J. Alison et al., Higgs boson potential at colliders: Status and perspectives, Rev. Phys. 5, 100045 (2020), 1910.00012. 10.1016/j.revip.2020.100045 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.