Open Access
Issue |
EPJ Web Conf.
Volume 315, 2024
International Workshop on Future Linear Colliders (LCWS2024)
|
|
---|---|---|
Article Number | 01018 | |
Number of page(s) | 10 | |
Section | Physics | |
DOI | https://doi.org/10.1051/epjconf/202431501018 | |
Published online | 18 December 2024 |
- J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.S. Shao, T. Stelzer, P. Torrielli, M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07, 079 (2014), 1405.0301. 10.1007/JHEP07(2014)079 [CrossRef] [Google Scholar]
- T. Gleisberg, S. Hoeche, F. Krauss, A. Schalicke, S. Schumann, J.C. Winter, SHERPA 1. alpha: A Proof of concept version, JHEP 02, 056 (2004), hep-ph/0311263. 10.1088/1126-6708/2004/02/056 [CrossRef] [Google Scholar]
- E. Bothmann et al. (Sherpa), Event Generation with Sherpa 2.2, SciPost Phys. 7, 034 (2019), 1905.09127. 10.21468/SciPostPhys.7.3.034 [CrossRef] [Google Scholar]
- W. Kilian, T. Ohl, J. Reuter, WHIZARD: Simulating Multi-Particle Processes at LHC and ILC, Eur. Phys. J. C 71, 1742 (2011), 0708.4233. 10.1140/epjc/s10052-011-1742-y [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- M. Moretti, T. Ohl, J. Reuter, O’Mega: An Optimizing matrix element generator, pp. 1981–2009 (2001), hep-ph/0102195. [Google Scholar]
- M. Bahr et al., Herwig++ Physics and Manual, Eur. Phys. J. C 58, 639 (2008), 0803.0883. 10.1140/epjc/s10052-008-0798-9 [CrossRef] [Google Scholar]
- J. Bellm et al., Herwig 7.0/Herwig++ 3.0 release note, Eur. Phys. J. C 76, 196 (2016), 1512.01178. 10.1140/epjc/s10052-016-4018-8 [CrossRef] [Google Scholar]
- T. Sjostrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05, 026 (2006), hep-ph/0603175. 10.1088/1126-6708/2006/05/026 [CrossRef] [Google Scholar]
- T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C.O. Rasmussen, P.Z. Skands, An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191, 159 (2015), 1410.3012. 10.1016/j.cpc.2015.01.024 [CrossRef] [Google Scholar]
- C. Bierlich et al., A comprehensive guide to the physics and usage of PYTHIA 8.3 (2022), 2203.11601. 10.21468/SciPostPhysCodeb.8 [Google Scholar]
- C.M. Carloni Calame, G. Montagna, O. Nicrosini, F. Piccinini, The BABAYAGA event generator, Nucl. Phys. B Proc. Suppl. 131, 48 (2004), hep-ph/0312014. 10.1016/j.nuclphysbps.2004.02.008 [CrossRef] [Google Scholar]
- S. Jadach, W. Placzek, E. Richter-Was, B.F.L. Ward, Z. Was, Upgrade of the Monte Carlo program BHLUMI for Bhabha scattering at low angles to version 4.04, Comput. Phys. Commun. 102, 229 (1997). 10.1016/S0010-4655(96)00156-7 [CrossRef] [Google Scholar]
- S. Jadach, W. Placzek, B.F.L. Ward, BHWIDE 1.00: O(alpha) YFS exponentiated Monte Carlo for Bhabha scattering at wide angles for LEP-1 / SLC and LEP-2, Phys. Lett. B 390, 298 (1997), hep-ph/9608412. 10.1016/S0370-2693(96)01382-2 [CrossRef] [Google Scholar]
- S. Jadach, B.F.L. Ward, Z. Wa˛s, S.A. Yost, A. Siodmok, Multi-photon Monte Carlo event generator KKMCee for lepton and quark pair production in lepton colliders, Comput. Phys. Commun. 283, 108556 (2023), 2204.11949. 10.1016/j.cpc.2022.108556 [CrossRef] [Google Scholar]
- J.M. Campbell et al., Event generators for high-energy physics experiments, SciPost Phys. 16, 130 (2024), 2203.11110. 10.21468/SciPostPhys.16.5.130 [CrossRef] [Google Scholar]
- M. Berggren (LCC), Generating the full SM at linear colliders, PoS ICHEP2020, 903 (2021), 2105.04049. 10.22323/1.390.0903 [Google Scholar]
- W. Abdallah et al. (CEPC Study Group), CEPC Technical Design Report: Accelerator, Radiat. Detect. Technol. Methods 8, 1 (2024), 2312.14363. 10.1007/s41605-024-00463-y [CrossRef] [Google Scholar]
- The International Linear Collider Technical Design Report - Volume 2: Physics (2013), 1306.6352. [Google Scholar]
- H. Abramowicz et al., The International Linear Collider Technical Design Report - Volume 4: Detectors (2013), 1306.6329. [Google Scholar]
- A. Abada et al. (FCC), FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2, Eur. Phys. J. ST 228, 261 (2019). 10.1140/epjst/e2019-900045-4 [CrossRef] [Google Scholar]
- A Multi-TeV Linear Collider Based on CLIC Technology: CLIC Conceptual Design Report (2012). 10.5170/CERN-2012-007 [Google Scholar]
- Physics and Detectors at CLIC: CLIC Conceptual Design Report (2012), 1202.5940. 10.5170/CERN-2012-003 [Google Scholar]
- C. Accettura et al., Towards a muon collider, Eur. Phys. J. C 83, 864 (2023), [Erratum: Eur.Phys.J.C 84, 36 (2024)], 2303.08533. 10.1140/epjc/s10052-023-11889-x [CrossRef] [Google Scholar]
- T. Ohl, CIRCE version 1.0: Beam spectra for simulating linear collider physics, Comput. Phys. Commun. 101, 269 (1997), hep-ph/9607454. 10.1016/S0010-4655(96)00167-1 [CrossRef] [Google Scholar]
- S. Frixione, O. Mattelaer, M. Zaro, X. Zhao, Lepton collisions in Mad-Graph5_aMC@NLO (2021), 2108.10261. [Google Scholar]
- T. Ohl, Functional Directed Acyclical Graphs for Scattering Amplitudes in Perturbation Theory (2023), 2306.02414. [Google Scholar]
- A. Ballestrero et al., Precise predictions for same-sign W-boson scattering at the LHC, Eur. Phys. J. C 78, 671 (2018), 1803.07943. 10.1140/epjc/s10052-018-6136-y [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- V. Rothe, Ph.D. thesis, Hamburg U., Universität Hamburg, Hamburg U., Hamburg (2021) [Google Scholar]
- P.M. Bredt, Ph.D. thesis, Hamburg U., Hamburg (2022), 2212.04393 [Google Scholar]
- P. Stienemeier, Ph.D. thesis, Hamburg U., Hamburg (2022) [Google Scholar]
- W. Kilian, J. Reuter, T. Robens, NLO Event Generation for Chargino Production at the ILC, Eur. Phys. J. C 48, 389 (2006), hep-ph/0607127. 10.1140/epjc/s10052-006-0048-y [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- T. Robens, J. Kalinowski, K. Rolbiecki, W. Kilian, J. Reuter, (N)LO Simulation of Chargino Production and Decay, Acta Phys. Polon. B 39, 1705 (2008), 0803.4161. [Google Scholar]
- P.M. Bredt, W. Kilian, J. Reuter, P. Stienemeier, NLO electroweak corrections to multi-boson processes at a muon collider, JHEP 12, 138 (2022), 2208.09438. 10.1007/JHEP12(2022)138 [CrossRef] [Google Scholar]
- G. Cullen et al. (GoSam), GOSAM-2.0: a tool for automated one-loop calculations within the Standard Model and beyond, Eur. Phys. J. C 74, 3001 (2014), 1404.7096. 10.1140/epjc/s10052-014-3001-5 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- F. Cascioli, P. Maierhofer, S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett. 108, 111601 (2012), 1111.5206. 10.1103/PhysRevLett.108.111601 [CrossRef] [PubMed] [Google Scholar]
- F. Buccioni, J.N. Lang, J.M. Lindert, P. Maierhöfer, S. Pozzorini, H. Zhang, M.F. Zoller (OpenLoops 2), OpenLoops 2, Eur. Phys. J. C 79, 866 (2019), 1907.13071. 10.1140/epjc/s10052-019-7306-2 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- S. Actis, A. Denner, L. Hofer, J.N. Lang, A. Scharf, S. Uccirati, RECOLA: REcursive Computation of One-Loop Amplitudes, Comput. Phys. Commun. 214, 140 (2017), 1605.01090. 10.1016/j.cpc.2017.01.004 [CrossRef] [Google Scholar]
- T. Binoth et al., A Proposal for a Standard Interface between Monte Carlo Tools and One-Loop Programs, Comput. Phys. Commun. 181, 1612 (2010), 1001.1307. 10.1016/j.cpc.2010.05.016 [CrossRef] [Google Scholar]
- S. Alioli et al., Update of the Binoth Les Houches Accord for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun. 185, 560 (2014), 1308.3462. 10.1016/j.cpc.2013.10.020 [CrossRef] [Google Scholar]
- S. Catani, M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485, 291 (1997), [Erratum: Nucl.Phys.B 510, 503–504 (1998)], hep-ph/9605323. 10.1016/S0550-3213(96)00589-5 [CrossRef] [Google Scholar]
- S. Frixione, Z. Kunszt, A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467, 399 (1996), hep-ph/9512328. 10.1016/0550-3213(96)00110-1 [Google Scholar]
- S. Frixione, A General approach to jet cross-sections in QCD, Nucl. Phys. B 507, 295 (1997), hep-ph/9706545. 10.1016/S0550-3213(97)00574-9 [Google Scholar]
- V.N. Gribov, L.N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15, 438 (1972). [Google Scholar]
- E.A. Kuraev, V.S. Fadin, On Radiative Corrections to e+ e-Single Photon Annihilation at High-Energy, Sov. J. Nucl. Phys. 41, 466 (1985). [Google Scholar]
- M. Skrzypek, S. Jadach, Exact and approximate solutions for the electron nonsinglet structure function in QED, Z. Phys. C 49, 577 (1991). 10.1007/BF01483573 [CrossRef] [EDP Sciences] [Google Scholar]
- M. Cacciari, A. Deandrea, G. Montagna, O. Nicrosini, QED structure functions: A Systematic approach, EPL 17, 123 (1992). 10.1209/0295-5075/17/2/007 [Google Scholar]
- S. Frixione, Initial conditions for electron and photon structure and fragmentation functions, JHEP 11, 158 (2019), 1909.03886. 10.1007/JHEP11(2019)158 [CrossRef] [Google Scholar]
- V. Bertone, M. Cacciari, S. Frixione, G. Stagnitto, The partonic structure of the electron at the next-to-leading logarithmic accuracy in QED, JHEP 03, 135 (2020), [Erratum: JHEP 08, 108 (2022)], 1911.12040. 10.1007/JHEP03(2020)135 [CrossRef] [Google Scholar]
- V. Bertone, M. Cacciari, S. Frixione, G. Stagnitto, M. Zaro, X. Zhao, Improving methods and predictions at high-energy e+e− colliders within collinear factorisation, JHEP 10, 089 (2022), 2207.03265. 10.1007/JHEP10(2022)089 [CrossRef] [Google Scholar]
- D.R. Yennie, S.C. Frautschi, H. Suura, The infrared divergence phenomena and high-energy processes, Annals Phys. 13, 379 (1961). 10.1016/0003-4916(61)90151-8 [CrossRef] [Google Scholar]
- S. Jadach, B.F.L. Ward, Z. Was, Coherent exclusive exponentiation for precision Monte Carlo calculations, Phys. Rev. D 63, 113009 (2001), hep-ph/0006359. 10.1103/Phys-RevD.63.113009 [CrossRef] [Google Scholar]
- F. Krauss, A. Price, M. Schönherr, YFS Resummation for Future Lepton-Lepton Colliders in SHERPA, SciPost Phys. 13, 026 (2022), 2203.10948. 10.21468/SciPostPhys.13.2.026 [CrossRef] [Google Scholar]
- S. Heinemeyer, S. Jadach, J. Reuter, Theory requirements for SM Higgs and EW precision physics at the FCC-ee, Eur. Phys. J. Plus 136, 911 (2021), 2106.11802. 10.1140/epjp/s13360-021-01875-1 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- S. Frixione et al., Initial state QED radiation aspects for future e+e− colliders, in Snowmass 2021 (2022), 2203.12557 [Google Scholar]
- M. Dasgupta, F.A. Dreyer, K. Hamilton, P.F. Monni, G.P. Salam, G. Soyez, Parton showers beyond leading logarithmic accuracy, Phys. Rev. Lett. 125, 052002 (2020), 2002.11114. 10.1103/PhysRevLett.125.052002 [CrossRef] [PubMed] [Google Scholar]
- F. Herren, S. Höche, F. Krauss, D. Reichelt, M. Schoenherr, A new approach to color-coherent parton evolution, JHEP 10, 091 (2023), 2208.06057. 10.1007/JHEP10(2023)091 [CrossRef] [Google Scholar]
- Z. Nagy, D.E. Soper, Summations of large logarithms by parton showers, Phys. Rev. D 104, 054049 (2021), 2011.04773. 10.1103/PhysRevD.104.054049 [CrossRef] [Google Scholar]
- J.R. Forshaw, J. Holguin, S. Plätzer, Building a consistent parton shower, JHEP 09, 014 (2020), 2003.06400. 10.1007/JHEP09(2020)014 [CrossRef] [Google Scholar]
- M. Knobbe, F. Krauss, D. Reichelt, S. Schumann, Measuring hadronic Higgs boson branching ratios at future lepton colliders, Eur. Phys. J. C 84, 83 (2024), 2306.03682. 10.1140/epjc/s10052-024-12430-4 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- W. Kilian, J. Reuter, S. Schmidt, D. Wiesler, An Analytic Initial-State Parton Shower, JHEP 04, 013 (2012), 1112.1039. 10.1007/JHEP04(2012)013 [CrossRef] [Google Scholar]
- S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11, 070 (2007), 0709.2092. 10.1088/1126-6708/2007/11/070 [CrossRef] [Google Scholar]
- J. Kalinowski, W. Kotlarski, P. Sopicki, A.F. Zarnecki, Simulating hard photon production with WHIZARD, Eur. Phys. J. C 80, 634 (2020), 2004.14486. 10.1140/epjc/s10052-020-8149-6 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- F. Bach, B.C. Nejad, A. Hoang, W. Kilian, J. Reuter, M. Stahlhofen, T. Teubner, C. Weiss, Fully-differential Top-Pair Production at a Lepton Collider: From Threshold to Continuum, JHEP 03, 184 (2018), 1712.02220. 10.1007/JHEP03(2018)184 [CrossRef] [Google Scholar]
- B. Chokoufé Nejad, W. Kilian, J.M. Lindert, S. Pozzorini, J. Reuter, C. Weiss, NLO QCD predictions for off-shell tt and ttH production and decay at a linear collider, JHEP 12, 075 (2016), 1609.03390. 10.1007/JHEP12(2016)075 [CrossRef] [Google Scholar]
- F. Staub, SARAH 4 : A tool for (not only SUSY) model builders, Comput. Phys. Commun. 185, 1773 (2014), 1309.7223. 10.1016/j.cpc.2014.02.018 [CrossRef] [Google Scholar]
- A. Semenov, LanHEP: A Package for the automatic generation of Feynman rules in field theory. Version 3.0, Comput. Phys. Commun. 180, 431 (2009), 0805.0555. 10.1016/j.cpc.2008.10.012 [CrossRef] [Google Scholar]
- A. Alloul, N.D. Christensen, C. Degrande, C. Duhr, B. Fuks, FeynRules 2.0 - A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185, 2250 (2014), 1310.1921. 10.1016/j.cpc.2014.04.012 [CrossRef] [Google Scholar]
- N.D. Christensen, C. Duhr, B. Fuks, J. Reuter, C. Speckner, Introducing an interface between WHIZARD and FeynRules, Eur. Phys. J. C 72, 1990 (2012), 1010.3251. 10.1140/epjc/s10052-012-1990-5 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, T. Reiter, UFO - The Universal FeynRules Output, Comput. Phys. Commun. 183, 1201 (2012), 1108.2040. 10.1016/j.cpc.2012.01.022 [CrossRef] [Google Scholar]
- L. Darmé et al., UFO 2.0: the ‘Universal Feynman Output’ format, Eur. Phys. J. C 83, 631 (2023), 2304.09883. 10.1140/epjc/s10052-023-11780-9 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- T. Ohl, Birdtracks of exotic SU(N) color structures, JHEP 06, 203 (2024), 2403.04685. 10.1007/JHEP06(2024)203 [CrossRef] [Google Scholar]
- W. Kilian, T. Ohl, J. Reuter, C. Speckner, QCD in the Color-Flow Representation, JHEP 10, 022 (2012), 1206.3700. 10.1007/JHEP10(2012)022 [CrossRef] [Google Scholar]
- S. Brass, W. Kilian, J. Reuter, Parallel Adaptive Monte Carlo Integration with the Event Generator WHIZARD, Eur. Phys. J. C 79, 344 (2019), 1811.09711. 10.1140/epjc/s10052-019-6840-2 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- K. Hagiwara, J. Kanzaki, Q. Li, N. Okamura, T. Stelzer, Fast computation of Mad-Graph amplitudes on graphics processing unit (GPU), Eur. Phys. J. C 73, 2608 (2013), 1305.0708. 10.1140/epjc/s10052-013-2608-2 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- A. Valassi, S. Roiser, O. Mattelaer, S. Hageboeck, Design and engineering of a simpli-fied workflow execution for the MG5aMC event generator on GPUs and vector CPUs, EPJ Web Conf. 251, 03045 (2021), 2106.12631. 10.1051/epjconf/202125103045 [Google Scholar]
- E. Bothmann, W. Giele, S. Hoeche, J. Isaacson, M. Knobbe, Many-gluon tree amplitudes on modern GPUs: A case study for novel event generators, SciPost Phys. Codeb. 2022, 3 (2022), 2106.06507. 10.21468/SciPostPhysCodeb.3 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.