Open Access
Issue |
EPJ Web Conf.
Volume 315, 2024
International Workshop on Future Linear Colliders (LCWS2024)
|
|
---|---|---|
Article Number | 01030 | |
Number of page(s) | 13 | |
Section | Physics | |
DOI | https://doi.org/10.1051/epjconf/202431501030 | |
Published online | 18 December 2024 |
- D. P. Aguillard et al. “Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm”. In: (Aug. 2023). arXiv: 2308.06230 [hep-ex]. [Google Scholar]
- T. Aoyama et al. “The anomalous magnetic moment of the muon in the Standard Model”. In: Phys. Rept. 887 (2020), pp. 1–166. arXiv: 2006.04822 [hep-ph]. [CrossRef] [Google Scholar]
- Y. S. Amhis et al. “Averages of b-hadron, c-hadron, and τ-lepton properties as of 2021”. In: Phys. Rev. D 107.5 (2023), p. 052008. arXiv: 2206.07501 [hep-ex]. [CrossRef] [Google Scholar]
- T. Aaltonen et al. “High-precision measurement of the W boson mass with the CDF II detector”. In: Science 376.6589 (2022), pp. 170–176. [Google Scholar]
- S. P. Martin. “A Supersymmetry primer”. In: Adv. Ser. Direct. High Energy Phys. 18 (1998). Ed. by G. L. Kane, pp. 1–98. arXiv: hep-ph/9709356. [CrossRef] [Google Scholar]
- J. Wess and B. Zumino. “Supergauge Transformations in Four-Dimensions”. In: Nucl. Phys. B70 (1974). [,24(1974)], pp. 39–50. [CrossRef] [Google Scholar]
- H. P. Nilles. “Supersymmetry, Supergravity and Particle Physics”. In: Phys. Rept. 110 (1984), pp. 1–162. [CrossRef] [Google Scholar]
- H. E. Haber and G. L. Kane. “The Search for Supersymmetry: Probing Physics Beyond th e Standard Model”. In: Phys. Rept. 117 (1985), pp. 75–263. [CrossRef] [Google Scholar]
- R. Barbieri, S. Ferrara, and C. A. Savoy. “Gauge Models with Spontaneously Broken Local Supersymmetry”. In: Phys. Lett. 119B (1982), p. 343. [CrossRef] [Google Scholar]
- A. Djouadi. “The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model”. In: Phys. Rept. 459 (2008), pp. 1–241. arXiv: hep-ph/0503173. [CrossRef] [Google Scholar]
- S. Schael et al. “Precision electroweak measurements on the Z resonance”. In: Phys. Rept. 427 (2006), pp. 257–454. arXiv: hep-ex/0509008. [Google Scholar]
- G. Aad et al. “Search for chargino–neutralino pair production in final states with three leptons and missing transverse momentum in √s = 13 TeV pp collisions with the ATLAS detector”. In: Eur. Phys. J. C 81.12 (2021), p. 1118. arXiv: 2106 . 01676 [hep-ex]. [Google Scholar]
- G. Aad et al. “Searches for electroweak production of supersymmetric particles with compressed mass spectra in √s = 13 TeV pp collisions with the ATLAS detector”. In: Phys. Rev. D 101.5 (2020), p. 052005. arXiv: 1911.12606 [hep-ex]. [CrossRef] [Google Scholar]
- A. Tumasyan et al. “Search for supersymmetry in final states with two or three soft leptons and missing transverse momentum in proton-proton collisions at √s = 13 TeV”. In: JHEP 04 (2022), p. 091. arXiv: 2111.06296 [hep-ex]. [Google Scholar]
- General search for supersymmetric particles in scenarios with compressed mass spectra using proton-proton collisions at √s = 13 TeV. Tech. rep. Geneva: CERN, 2024. url: https://cds.cern.ch/record/2904926. [Google Scholar]
- G. Aad et al. “ATLAS Run 2 searches for electroweak production of supersymmetric particles interpreted within the pMSSM”. In: JHEP 05 (2024), p. 106. arXiv: 2402. 01392 [hep-ex]. [Google Scholar]
- A. Aryshev et al. “The International Linear Collider: Report to Snowmass 2021”. In: (Mar. 2022). arXiv: 2203.07622 [physics.acc-ph]. [Google Scholar]
- T. Behnke et al., eds. The International Linear Collider Technical Design Report - Volume 1: Executive Summary. June 2013. arXiv: 1306.6327 [physics.acc-ph]. [Google Scholar]
- “The International Linear Collider Technical Design Report - Volume 2: Physics”. In: (June 2013). Ed. by H. Baer et al. arXiv: 1306.6352 [hep-ph]. [Google Scholar]
- “The International Linear Collider Technical Design Report - Volume 3.I: Accelerator \& in the Technical Design Phase”. In: (June 2013). Ed. by C. Adolphsen et al. arXiv: 1306.6353 [physics.acc-ph]. [Google Scholar]
- “The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design”. In: (June 2013). Ed. by C. Adolphsen et al. arXiv: 1306.6328 [physics.acc-ph]. [Google Scholar]
- H. Abramowicz et al. The International Linear Collider Technical Design Report - Volume 4: Detectors. Ed. by T. Behnke et al. June 2013. arXiv: 1306 . 6329 [physics.ins-det]. [Google Scholar]
- T. Barklow et al. ILC Operating Scenarios. June 2015. arXiv: 1506.07830 [hep-ex]. [Google Scholar]
- O. Brunner et al. “The CLIC project”. In: (Mar. 2022). arXiv: 2203 . 09186 [physics.acc-ph]. [Google Scholar]
- T. K. Charles et al. “The Compact Linear Collider (CLIC) - 2018 Summary Report”. In: 2/2018 (Dec. 2018). Ed. by P. N. Burrows et al. arXiv: 1812 . 06018 [physics.acc-ph]. [Google Scholar]
- “Physics and Detectors at CLIC: CLIC Conceptual Design Report”. In: (Feb. 2012). Ed. by L. Linssen et al. arXiv: 1202.5940 [physics.ins-det]. [Google Scholar]
- C. Vernieri et al. “Strategy for Understanding the Higgs Physics: The Cool Copper Collider”. In: JINST 18.07 (2023), P07053. arXiv: 2203.07646 [hep-ex]. [CrossRef] [Google Scholar]
- G. Bernardi et al. “The Future Circular Collider: a Summary for the US 2021 Snowmass Process”. In: (Mar. 2022). arXiv: 2203.06520 [hep-ex]. [Google Scholar]
- A. Abada et al. “FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1”. In: Eur. Phys. J. C 79.6 (2019), p. 474. [CrossRef] [Google Scholar]
- A. Abada et al. “FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2”. In: Eur. Phys. J. ST 228.2 (2019), pp. 261–623. [CrossRef] [Google Scholar]
- J. Gao. “Snowmass2021 White Paper AF3-CEPC”. In: (Mar. 2022). arXiv: 2203 . 09451 [physics.acc-ph]. [Google Scholar]
- H. Cheng et al. “The Physics potential of the CEPC. Prepared for the US Snowmass Community Planning Exercise (Snowmass 2021)”. In: Snowmass 2021. May 2022. arXiv: 2205.08553 [hep-ph]. [Google Scholar]
- “CEPC Conceptual Design Report: Volume 1 - Accelerator”. In: (Sept. 2018). arXiv: 1809.00285 [physics.acc-ph]. [Google Scholar]
- M. Dong et al. “CEPC Conceptual Design Report: Volume 2 - Physics & Detector”. In: (Nov. 2018). Ed. by J. B. Guimarães da Costa et al. arXiv: 1811.10545 [hep-ex]. [Google Scholar]
- T. F. J. R. Ellis and K. A. Olive. “Neutralino-Stau Coannihilation and the Cosmological Upper Limit on the Mass of the Lightest Supersymmetric Particle”. In: Phys. Lett. B 444 (1998), p. 367. arXiv: 9810360 [hep-ph]. [CrossRef] [Google Scholar]
- LEP SUSY Working Group, ALEPH, DELPHI, L3 and OPAL Collaborations. Combined LEP Selectron/Smuon/Stau Results, 183-208 GeV. Tech. rep. LEPSUSYWG/04-01.1. url: http://lepsusy.web.cern.ch/lepsusy/www/sleptons_summer04/slep_final.html. [Google Scholar]
- R. L. Workman et al. “Review of Particle Physics”. In: PTEP 2022 (2022), p. 083C01. [Google Scholar]
- J. Abdallah et al. “Searches for supersymmetric particles in e+ e- collisions up to 208- GeV and interpretation of the resul ts within the MSSM”. In: Eur. Phys. J. C31 (2003), pp. 421–479. arXiv: hep-ex/0311019 [hep-ex]. [Google Scholar]
- ATLAS Collaboration. Search for electroweak SUSY production in finaltates with two τ-leptons in √s = 13 TeV pp collisions with the ATLAS detector. Tech. rep. Geneva: CERN, May 2023. url: http://cds.cern.ch/record/2861058/files/ATLAS-CONF-2023-029.pdf. [Google Scholar]
- ATLAS Collaboration. Prospects for searches for staus, charginos and neutralinos at the high luminosity LHC with the ATLAS Detector. Tech. rep. Geneva: CERN, Dec. 2018. url: https://cds.cern.ch/record/2651927. [Google Scholar]
- H. Abramowicz et al. International Large Detector: Interim Design Report. Mar. 2020. arXiv: 2003.01116 [physics.ins-det]. [Google Scholar]
- M. Berggren. “Generating the full SM at linear colliders”. In: PoS ICHEP2020 (2021), p. 903. arXiv: 2105.04049 [hep-ex]. [Google Scholar]
- D. Schulte. Beam-beam simulations with GUINEA-PIG. Tech. rep. 1999. url: https://cds.cern.ch/record/382453. [Google Scholar]
- P. Chen, T. L. Barklow, and M. E. Peskin. “Hadron production in gamma gamma collisions as a background for e+ e- linear colliders”. In: Phys. Rev. D 49 (1994), pp. 3209–3227. arXiv: hep-ph/9305247. [CrossRef] [PubMed] [Google Scholar]
- W. Porod and F. Staub. “SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM”. In: Comput. Phys. Commun. 183 (2012), pp. 2458–2469. arXiv: 1104.1573 [hep-ph]. [CrossRef] [Google Scholar]
- W. Kilian, T. Ohl, and J. Reuter. “WHIZARD: Simulating Multi-Particle Processes at LHC and ILC”. In: Eur. Phys. J. C 71 (2011), p. 1742. arXiv: 0708.4233 [hep-ph]. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- M. Berggren. “SGV 3.0 - a fast detector simulation”. In: International Workshop on Future Linear Colliders (LCWS11). Mar. 2012. arXiv: 1203 . 0217 [physics.ins-det]. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.