Open Access
Issue
EPJ Web Conf.
Volume 315, 2024
International Workshop on Future Linear Colliders (LCWS2024)
Article Number 02001
Number of page(s) 8
Section Accelerator
DOI https://doi.org/10.1051/epjconf/202431502001
Published online 18 December 2024
  1. T.K. Charles et al. (CLICdp, CLIC), The Compact Linear Collider (CLIC) - 2018 Summary Report, 2/2018 (2018), 1812.06018. 10.23731/CYRM-2018-002 [Google Scholar]
  2. The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design (2013), 1306.6328. [Google Scholar]
  3. K. Akai, K. Furukawa, H. Koiso et al., Superkekb collider, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 907, 188 (2018). [CrossRef] [Google Scholar]
  4. Dassault Systèmes, CST Studio Suite (2023), https://www.3ds.com/products-services/ simulia/products/cst-studio-suite/ [Google Scholar]
  5. D. Schulte, Placet: A program to simulate drive beams (2000), http://twiki.cern.ch/ twiki/bin/view/ABPComputing/Placet [Google Scholar]
  6. A. Lunin, V. Yakovlev, A. Grudiev, Analytical solutions for transient and steady state beam loading in arbitrary traveling wave accelerating structures, Phys. Rev. ST Accel. Beams 14, 052001 (2011). 10.1103/PhysRevSTAB.14.052001 [CrossRef] [Google Scholar]
  7. A. Latina, The Tracking Code RF-Track and Its Application, JACoW HB 2023, 245 (2024). 10.18429/JACoW-HB2023-WEA3C1 [Google Scholar]
  8. P.b. Zhou, Finite Difference Method (Springer Berlin Heidelberg, Berlin, Heidelberg, 1993), pp. 63–94, ISBN 978-3-642-50319-1, https://doi.org/10.1007/ 978-3-642-50319-1_3 [Google Scholar]
  9. J. Olivares Herrador, A. Latina, A. Aksoy, N. Fuster Martnez, B. Gimeno, D. Esperante, Implementation of the beam-loading effect in the tracking code RF-track based on a power-diffusive model, Front. in Phys. 12, 1348042 (2024). 10.3389/fphy.2024.1348042 [CrossRef] [Google Scholar]
  10. B. Aune, R.H. Miller, NEW METHOD FOR POSITRON PRODUCTION AT SLAC, in 10th International Linear Accelerator Conference (1980), pp. S8–7 [Google Scholar]
  11. A Multi-TeV Linear Collider Based on CLIC Technology: CLIC Conceptual Design Report (2012). 10.5170/CERN-2012-007 [Google Scholar]
  12. C. Bayar, A.K. Ciftci, S. Doebert, A. Latina, Design and optimisation of the positron production chain for CLIC from the target to the damping ring, Nucl. Instrum. Meth. A 869, 56 (2017). 10.1016/j.nima.2017.07.010 [CrossRef] [Google Scholar]
  13. Y.L. Han, C. Bayar, A. Latina, S. Doebert, D. Schulte, L.L. Ma, Optimization of the CLIC positron source using a start-to-end simulation approach involving multiple simulation codes, Nucl. Instrum. Meth. A 928, 83 (2019). 10.1016/j.nima.2019.03.044 [CrossRef] [Google Scholar]
  14. Y. Zhao, H. Bajas, S. Döbert, A. Latina, L. Ma, Optimisation of the CLIC Positron Source, in 12th International Particle Accelerator Conference (2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.